
{0,1} - INTEGER PROGRAMMING WITH COMPLETE
CONSTRAINT MATRICES

Jérémi Do Dinh

Abstract

Integer Programming is a well-explored field in Computer Science and Mathematics.
Results are often obtained for specific types of integer programs, such as standard
forms. Our study imposes additional constraints by considering a complete constraint
matrix, which is fixed for a given input size. This specificity provides opportunities
for analyzing more tailored solutions and investigating how the problem performs with
varied inputs. Our research employs a diverse set of methods to comprehend how to
solve the problem and determine feasibility ranges based on its instance.

1 Introduction

General Integer Program feasibility, can be seen as decision problems with inputs corre-
sponding to a matrix A ∈ Zm×n and a right hand side b ∈ Zm, where the decision is about
whether there exists a binary vector x such that Ax = b. Solving such programs requires us
to further output a valid solution. The problem explored here, yields many analogies to the
general case, however with an additional restriction imposed on the matrix A, by having it
to be the complete matrix. The specific nature of our problem is described below.

1.1 The Complete Matrix

In our problem, the notion of the Complete Matrix is essential, and therefore we give its
definition.

Definition 1. Given an integer m > 0, we define the complete matrix Am ∈ {0, 1}m×2m

to be the binary matrix, whose columns represent all the distinct binary strings on m
bits.

An example for m = 5 is shown below:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

.

While it is not necessary to have the ordering of the columns be strictly defined, the matrix
above is constructed recursively, for any m, by obtaining two copies of the matrix for m−1,

1

appending a row of 0s and 1s at the top of each copy and then putting them side by side,
as follows:

Am =

[
0⊤ 1⊤

Am−1 Am−1

]
.

This is represented by the colored squares in the example for m = 5 above.

1.2 Problem Statement

Our problem is defined as follows. Given a vector b ∈ Nm, referred hereinafter as the
right-hand side (or RHS), we are interested in obtaining a solution x ∈ {0, 1}2m , such that

Amx = b

whereAm is the complete matrix, following the definition from above. We are also interested
in properties and conditions for feasibility of such right hand sides.

2 Preliminaries

2.1 Related Work

The problem at hand is essentially a special form of Integer Program, and we know that
general {0, 1} integer programs1 are NP-complete [Kar72]. However this is specific to the
case where where the input size includes both the size of the matrix A and the size of the
RHS b. Since our problem is well defined based on an input consisting only of the RHS b,
we may want to consider other approaches to analyzing the problem.

One idea is to consider how simple modification to the problem at hand can affect where
the problem falls in terms of its complexity.

Firstly we notice that restricting ourselves only to a subset of the columns automatically
makes the problem NP-hard. The reduction is from the NP-complete ExactSetCover
problem [Koz92], where m is defined based on the size of the universe, the columns selected
correspond to the family of subsets given as input to the problem, and the right hand side
is set to be the 1 vector.

On another topic, adding an objective function makes this an Integer Linear Program.
Thanks to Eisenbrand and Weismantel [EW20], we know that an Integer Linear Program-
ming problem in standard form:

max{c⊤x : Ax = b, x ≥ 0, x ∈ Zn}

with A ∈ Zm×n, b ∈ Zm, c ∈ Zn can be solved in time (m·∆)O(m) ·∥b∥2∞. Here ∆ is the upper
bound on each absolute value in A (which in our case is 1). Much of the power of this result
comes from the fact that the worst case time doesn’t depend on the number of variables
(which in our case increases exponentially with the size of the input). In this project, less
algorithmic approaches were investigated, with the hope that results can more directly be
obtained due to the strict definition of our problem (and in particular the complete matrix).

1The problem where given an integer matrix A and an integer vector b, we seek a binary vector x such
that Ax = b

2

Our problem can also be made easier, through the consideration of the LP relaxation, where

we allow x ∈ [0, 1]
2m

. Investigating how the fractional solutions relate to integral solutions is
interesting both with regards of obtaining the solution and feasibility. We can ask whether
a fractional solution necessarily implies an integral one, however this is beyond the scope of
this project.

2.2 Intuitions regarding the set of feasible right hand sides

We seek to find a decomposition of each right hand side into a sum of distinct binary vectors
of m bits.

Firstly, we might highlight the fact that the ordering of the entries in the right hand side
has no implication on the feasibility of the solution. In fact, if we are able to find a solution
for a sorted right hand side bsort, we can derive the solution for the original b through a
relabeling of variables.

A direct implication of the nature of the complete matrices is that the set F ∈ Nm of
feasible right hand sides is a subset of

[
2m−1 + 1

]m
.2 For m > 1, this inclusion is strict.

In particular, any vector with all zero entries, except a single entry strictly greater than 1
is infeasible.

This suggests that there are at most (2m−1 + 1)m right hand sides. On the other hand
we have 22

m−1 linear combinations on the columns of the complete matrix. This puts into
perspective the observation that there can be multiple solutions per right hand side.

A somewhat stronger measure is represented by the following lemma.

Lemma 1. If b = [b1, b2, . . . , bm]⊤ ∈ Nm is feasible, that is there exists an x ∈ {0, 1}2m ,
such that Amx = b, then:

max
i
{bi} −min

i
{bi} ≤ 2m−2.

Proof. Without loss of generality, let’s assume that b is sorted in descending order. We
claim that b being feasible implies that b1 − bm ≤ 2m−2.

The case where b1 ≤ 2m−2 is trivial. Therefore let’s suppose that b1 > 2m−2.

Let x∗ be a solution for Ax = b, and C be the set of columns used to obtain that
solution. Let C(1) ⊆ C be the subset of those columns that have a 1 in the top entry.
It must hold that

∣∣C(1)
∣∣ > 2m−2. In addition, we can define A(1) to be the submatrix

of A, composed of columns containing 1 in the top entry.

We have that each row of A(1) contains exactly 2m−2 ones, except the first one which
contains 2m−1 ones. Additionally the elements of C(1) are columns of A(1). Then
since |C(1)| > 2m−2, then each row of the sub-matrix of A(1) formed by the columns
in C1 contains at least b1 − 2m−2 ones. In particular from the definition we have that
bm ≥ b1 − 2m−2 and it follows that b1 − bm ≤ 2m−2.
2For n ∈ N∗, we use the notation [n] for the set {0, 1, 2, . . . , n− 1}

3

This furthermore restricts the number of possible feasible right hand sides.

3 Main Results

3.1 Maximal Decomposition

One approach to the problem at hand is to look at the maximal decomposition of the right
hand sides, which can be the source of patterns for solving the problem. For this, some
definitions are useful.

Definition 2. For a given column ci of the complete matrix, we define a ”pair” to be
the tuple (ci, cj) such that ci + cj = 1. We call ci the complement of cj and vice-versa.

Definition 3. Given a feasible right hand side b we refer to the maximal decomposition
of b as the summation of a vector u and the 1 vector scaled by a factor k ∈ N, such
that b = u+ k · 1, where k is maximal such that Ax = u is feasible:

b = u+ k · 1.

In this case we refer to u as minimal feasible (i.e. u− 1 is not feasible).

The set Fmin of minimal feasible right hand sides represent yet another subset of all feasible
right hand sides, and the ability to check membership in Fmin for a right hand side efficiently
can be a powerful tool, especially due to the following theorem.

Theorem 2. Given a maximal decomposition b = u+ k · 1. If Ax = b is feasible, then
each support minimal solution xu to Ax = u can be extended to a solution x∗ = xu+xk

such that xu + xk ≤ 1.

Proof. Suppose that this is not true. Therefore there must exist a solution x′ = xu′+xk′

such that Ax′ = b, but xu′ is not support minimal or k′ is not maximal w.r.t. the
definition of maximal decomposition and a support minimal solution cannot be extended
to a solution of Ax = b.

We can define X ′
1 to be the set of columns used for xu′ . Based on this set, we define

X ′
2 to be the set of complements of the columns in X ′

1. We then let X ′
R be the set of

remaining columns of A. We note that X ′
R can be partitioned into |X ′

R| /2 pairs.

In the case where X ′
1 ∩X ′

2 ̸= ∅, then X ′
1 must contain a pair (ci, cj). In this case, we

have that u′ can be reduced by 1, and thus increase k′ by 1, which yields u′′ and k′′. A

new solution to this decomposition can be obtained by setting x
(i)
u′ = x

(j)
u′ = 0 to obtain

xu′′ and setting x
(i)
k′ = x

(j)
k′ = 1 to obtain xk′′ . This contradicts the maximality of the

decomposition.

Let’s therefore assume that X ′
1 ∩X ′

2 = ∅. If k′ ≤ |X ′
R| /2, then the columns of X ′

R are
sufficient to define a solution to Ax = k′ · 1. Then some support minimal solution to
Ax = u′ would yield |XR| > |X ′

R|.

4

As a result, we can further assume that k′ > |X ′
R| /2. Therefore, there must be a

column cj ∈ X ′
2 present in our solution for x′. For this columns there is a complement

ci ∈ X ′
1. This can be used to show that u′ is not minimal, by defining a solution with a

smaller support to solve a smaller u. To achieve this, we set x
(i)
u′ = 0, which essentially

deletes ci and cj from the sets X ′
1 and X ′

2 respectively and adds them to X ′
R. This is

followed by setting x
(i)
k′ = 1.

This expresses the same solution to Ax = b, but using a different decomposition, and
using a u < u′ that uses less columns. This step can be repeated for every column of
X ′

2. This way we can obtain a solution that only uses columns of X ′
R to obtained the

scaled 1 vector after we obtain a sufficiently small u′′.

It may be that the u′′ obtained might not be minimal w.r.t to the maximal decom-
position, however if the problem can be solved for some u′′ larger than a minimal u,
such that the remaining solution uses columns of X ′

R, then as already argued this result
holds for the maximal decomposition.

This result is useful especially given the fact that each feasible right hand side can be
associated with a unique minimal feasible u. On top of this, we can partition all feasible
right hand sides into subsets that are indexed by their minimal feasible u.

Additionally, let’s assume that we are given an oracle OM that on input u can quickly tell
us, if u is minimal feasible, and on top of this, another oracle OS that on input (u, i) can
tell us quickly if a support minimal solution to Ax = u uses less than i columns from A.
Then, given a right hand side b, we can run the following algorithm to determine feasibility:

Input : b ∈ Nm, assumed sorted, Oracles OM and OS

Output: Yes if b is feasible, No otherwise

1 m← len(b);
2 if b1 − bm > 2m−2 then
3 return No
4 end
5 bcur ← b;
6 for k ← 0 to bm do
7 bcur ← bcur − 1;
8 if OM (bcur) = Yes and OM (bcur, 2

m−1 − k) = Yes then
9 return Yes

10 end

11 end
12 return No

In the algorithm above, we simply start from the given RHS b, and iteratively subtract the
1 vector. At each step, we make call to the oracle OM to check if at the given iteration
the current vector bcur is minimal feasible. If it is, we make a call to OM , to check if the
support minimal solution to Ax = bcur uses less than 2m−1− k. This ensures that there are
enough vectors for us to be able to reconstruct the scaled 1 vector, to extend the solution
of Ax = bcur to a solution of Ax = b.

5

3.2 Random Informed Guesses

In this section the extent to which we can use randomness to achieve our result was con-
sidered. For this we ask some questions about how particular right hand sides, and their
nature affect how one can try to solve the problem using a guessing approach.

Namely, if b is feasible, how many times would we have to select a random solution x, until
we find a solution to Ax = b if:

1. 1 · 2m−3 ≤ b ≤ 1 · 2m−2

2. 1 · 2m/c ≤ b ≤ 1 · 2m−2

3. 1 · 2m/ log(m) ≤ b ≤ 1 · 2m−2

With this in mind, we are interested in finding whether it is possible to define an ordering
of feasible right hand sides, such that the number of solutions is non-decreasing.

To tackle these questions, a computer program was created3 to greedily search for some
primary results. To begin with, a search was made through all of the linear combinations
for the columns of the matrix, to collect data with regards to how many such combinations
map to a particular range. This was done for m = 4 and m = 5, and the results can be seen
in Appendix 1.

To obtain the results for the Number of linear combinations column, all of the possible
x ∈ {0, 1}2m−1 (omitting the 0 vector) were enumerated, and multiplied with A. Then it
was counted how many such solutions fall within the ranges specified in the leftmost column.

To obtain the results for the Number of feasible RHS, the set
[
2m−1 + 1

]m
was enumerated,

and for each element of this set, the feasibility was checked with the use of the CPLEX
module from IBM.

Using these results, it was possible to obtain some statistics such as the average amount of
linear combinations per RHS in a particular range, or the proportion of RHS that are in a
particular range out of all possible RHS, and similarly for the linear combinations. Those
measures are represented in the three entailing columns of the tables.

Another measure taken from the enumeration of all possible linear combinations, was a
count of the number of solutions that yield a RHS with a particular ℓ1 norm. Below are the
plots for m = 4 and m = 5:

3The code can be found at https://github.com/jdodinh/CS-498_SemesterProject/tree/main/code

6

0 5 10 15 20 25 30
0

1,000

2,000

3,000

∥b∥1

N
u
m
b
er

of
li
n
ea
r
co
m
b
in
at
io
n
s

of lin. combos. for a given ℓ1 norm for m = 4

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1.2
·108

∥b∥1

N
u
m
b
er

o
f
li
n
ea
r
co
m
b
in
at
io
n
s

of lin. combos. for a given ℓ1 norm for m = 5

It can be seen from the bar graphs that the highest number of linear combinations yield a
right hand side b whose ℓ1 norm is 16 and 40 for m = 4 and m = 5 respectively. It may
seem that for any m, these values correspond to m · 2m−2.

In fact, let C(Am) be the set of columns of Am. Then if we uniformly and at random pick
subsets of columns C ⊆ C(Am), and let our random variable be the ℓ1 norm of the resulting
right hand side, we have that the expected value of this variable would exactly be m · 2m−2:

E [∥b∥1] = 2−mE

[∑
C⊆C(Am)

∑
c∈C

∥c∥1︸ ︷︷ ︸
ℓ1 of RHS

created by C

]

= 2−m
∑

C⊆C(Am)

∑
c∈C

E [∥c∥1]

= 2−m
∑

C⊆C(Am)

∑
c∈C

m

2

= 2−m
∑
c∈C

∑
C⊆C(Am)
s.t. c∈C

m

2

= 2−m · 2m · 2m−1 · m
2

= m · 2m−2.

Which is the expected ℓ1 of the right hand side given the complete matrix, if we were to pick
subsets of columns uniformly and at random. This explains why the number of combinations
per ℓ1 norm is symmetrically spread around m ·2m−2. The full list of values that yield those
charts can be found in Appendix 2.

Unfortunately, coming up with these charts for m > 5 is computationally expensive. Since
already for m = 5, we have 231 linear combination to iterate through, getting a result for
any higher value of m is not likely to terminate quickly.

7

These charts however suggest that based on the ℓ1 norm of the RHS, we can perhaps direct
the search for the columns used, to ideally require less guesses to arrive at our solution.

3.3 Sensitivity

In this section we are interested in knowing whether the ℓ1 norm of the difference between
two distinct right hand sides b and b′ can tell us about the difference in the support of their
solution. That is whether for all solutions x and x′ to Ax = b and Ax = b′ respectively, it
necessarily holds that ∥x− x′∥1 ≤ p(m)∥b− b′∥1 for some function p.

Unfortunately, we have managed to show an example when the sensitivity is large, therefore
negating the above argument. Namely that there exists a b and a solution to Ax = b, and
another rhs b′ such that all solutions to Ax = b′ are far away from x. We elaborate on the
example below.

For any m consider the following right hand side:

b =

2m−1 − 1
2m−2

...
2m−2

 .

We can construct a solution Ax = b as follows: choose all the columns from Am that
have a 1 in the first entry, except the all 1 column. This yields a right hand side value
of [2m−1 − 1, 2m−2 − 1, · · · , 2m−2 − 1]⊤, and vectors still need to be chosen to satisfy the
remaining difference of

[
0, 1, · · · , 1︸ ︷︷ ︸

m−1 times

]
. To satisfy this we choose all of the m− 1 remaining

unit vectors that aren’t yet part of our support.

Now we can provide a new right hand side b′ defined as follows:

b′ =

2m−1

2m−2

...
2m−2

 .

We have that ∥b− b′∥1 = 1, and we observe that to satisfy the first entry of this right hand
side, we are forced to pick all the columns of Am that have a 1 in the first entry. However,
picking all of those columns already satisfies b′ and furthermore it is the unique solution to
b′. Moreover, it means that all of the m − 1 unit vectors used in our solution to b cannot
be in the support. We have that ∥x − x′∥ = m, which provides an example for when the
sensitivity is large.

This sensitivity result shows that we cannot necessarily rely on knowledge of results for
particular right hand sides to derive a solution to another right hand side that is close with
respect to the ℓ1 norm. In the worst case it is possible to have to change over m columns
in the support, which is computationally expensive.

8

4 Future Work

4.1 Proximity

In this project an interest was given to the proximity of solutions given a right hand side.
That is, given b, we would like to find some bound lb ≤ ∥x∥1 ≤ ub, for the set of solutions
to Ax = b in order to derive how close solutions to the same right hand side may be.

A trivial value for lb is of course bmax, the maximal entry in the right hand side. This follows
from the fact, that in order to satisfy the value bmax in the right hand side, we must choose
at least bmax columns in our support.

On the other hand, a trivial value for ub would of course be ∥b∥1, because this indicates the
worst case scenario where on average for each column c in the support, we would have that
∥c∥1 = 1.

There of course exist examples of right hand sides, where these bounds are tight, such as for
instance b = 1, where we have that bmax = 1 and ∥b∥1 = m. For those there exist solutions
xl and xu with ∥xl∥1 = 1 and ∥xu∥ = m. Namely, for xl we choose the all 1 column of A,
and for xu we choose the m unit vectors.

The derivation for better proximity bounds is not a subject that was further investigated in
this project, and is the reason for which it’s mentioned in the scope of future work. We are
optimistic that some tighter bound can be derived, that leverage the nature of the RHS in
a more thorough manner.

5 Conclusion

In this project, a specific form of Integer Program was investigated. While it is possible
to use existing results to solve this problem in an efficient way, the particular nature of
the constraints led to an exploration of the topic from different aspects, with the hope
that more efficient methods may exist for Integer Programs of this form. This was done
through maximal decomposition, a randomized approach as well as analysis of sensitivity
and proximity to yield our results. While no concrete solution strategy was derived, those
approaches provide valuable insight to the understanding of the problem, which may be
useful in the pursuit of deriving an efficient result.

9

References

[EW20] Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algo-
rithms for integer programming using the steinitz lemma. Acm Transactions On
Algorithms, 16(1):5, 2020.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity
of Computer Computations: Proceedings of a symposium on the Complexity of
Computer Computations, pages 85–103. Springer US, Boston, MA, 1972.

[Koz92] Dexter C. Kozen. More np-complete problems. In The Design and Analysis of
Algorithms, pages 122–127. Springer New York, New York, NY, 1992.

10

Appendix

1. Results for random informed guesses

m = 4

Ranges # of lin combos # of feas. RHS lin. combos/RHS prop. of feasible RHS prop. of lin. combos

2m−2 ≤ b ≤ 2m−1 11090 457 24.26 0.7312 0.3383
2m−3 ≤ b ≤ 2m−1 29230 1099 26.6 0.4577 0.8920
2m−4 ≤ b ≤ 2m−1 32300 1410 22.91 0.3442 0.9856
2m−3 ≤ b ≤ 2m−2 7887 81 97.37 1 0.2407
2m−4 ≤ b ≤ 2m−2 10620 256 41.47 1 0.324
2m−4 ≤ b ≤ 2m−3 457 16 28.56 1 0.01395
0 ≤ b ≤ 2m−1 32770 1611 20.34 0.2455 1
0 ≤ b ≤ 2m−2 11090 457 24.26 0.7312 0.3383
0 ≤ b ≤ 2m−3 652 77 8.468 0.9506 0.01990
0 ≤ b ≤ 2m−4 52 16 3.250 1 0.001587

m = 5

Ranges # of lin combos # of feas. RHS lin. combos/RHS prop. of feasible RHS prop. of lin. combos

2m−2 ≤ b ≤ 2m−1 5.464e+08 3.475e+04 1.572e+04 0.5886 0.2545
2m−3 ≤ b ≤ 2m−1 2.055e+09 1.094e+05 1.877e+04 0.2948 0.9568
2m−4 ≤ b ≤ 2m−1 2.145e+09 1.463e+05 1.466e+04 0.1927 0.9987
2m−5 ≤ b ≤ 2m−1 2.147e+09 1.593e+05 1.348e+04 0.1519 0.9999
2m−3 ≤ b ≤ 2m−2 4.635e+08 3.125e+03 1.483e+05 1 0.2159
2m−4 ≤ b ≤ 2m−2 5.438e+08 1.653e+04 3.289e+04 0.9836 0.2532
2m−5 ≤ b ≤ 2m−2 5.463e+08 2.723e+04 2.006e+04 0.8309 0.2544
2m−4 ≤ b ≤ 2m−3 1.762e+06 2.430e+02 7.253e+03 1 8.207e-04
2m−5 ≤ b ≤ 2m−3 2.179e+06 1.024e+03 2.128e+03 1 1.015e-03
2m−5 ≤ b ≤ 2m−4 6995 32 218.6 1 3.257e-06
0 ≤ b ≤ 2m−1 2.147e+09 1.668e+05 1.287e+04 0.1175e-01 1
0 ≤ b ≤ 2m−2 5.464e+08 3.475e+04 1.572e+04 0.5886 0.2545
0 ≤ b ≤ 2m−3 2.233e+06 2780 803.2 0.8896 1.040e-03
0 ≤ b ≤ 2m−4 9736 238 40.91 0.9794 4.534e-06
0 ≤ b ≤ 2m−5 203 32 6.344 1.000 9.453e-08

11

2. Number of linear combinations with respect to the ℓ1 norm of the
right hand side

m = 4

∥b∥1 # of lin. comb.

0 1
1 4
2 12
3 32
4 69
5 136
6 246
7 404
8 626
9 908
10 1238
11 1608
12 1979
13 2320
14 2600
15 2780
16 2842
17 2780
18 2600
19 2320
20 1979
21 1608
22 1238
23 908
24 626
25 404
26 246
27 136
28 69
29 32
30 12
31 4
32 1

m = 5

∥b∥1 # of lin. comb. ∥b∥1 # of lin. comb.

0 1 41 108339745
1 5 42 105794820
2 20 43 101680950
3 70 44 96180495
4 205 45 89529614
5 552 46 82002490
6 1370 47 73893715
7 3155 48 65498320
8 6875 49 57096175
9 14200 50 48936938
10 27978 51 41228710
11 52890 52 34132135
12 96160 53 27757330
13 168740 54 22165260
14 286530 55 17372285
15 471756 56 13357400
16 754575 57 10069975
17 1174445 58 7438860
18 1781190 59 5381110
19 2635490 60 3808733
20 3808733 61 2635490
21 5381110 62 1781190
22 7438860 63 1174445
23 10069975 64 754575
24 13357400 65 471756
25 17372285 66 286530
26 22165260 67 168740
27 27757330 68 96160
28 34132135 69 52890
29 41228710 70 27978
30 48936938 71 14200
31 57096175 72 6875
32 65498320 73 3155
33 73893715 74 1370
34 82002490 75 552
35 89529614 76 205
36 96180495 77 70
37 101680950 78 20
38 105794820 79 5
39 108339745 80 1
40 109201114

12

