
Simulation Security in the
Random Oracle Model

Jérémi Do Dinh

School of Computer and Communication Sciences

Master’s Thesis

August 2024

Responsible
Prof. Alessandro Chiesa

EPFL / COMPSEC

Supervisor
Giacomo Fenzi

EPFL / COMPSEC

Abstract

Cryptographic arguments are versatile and can be used to construct cryptographic primitives,
such as signature schemes and adaptively secure encryption schemes. Compared to the classical
notions of zero-knowledge, soundness, and knowledge soundness, these constructions require a
strengthening of the security properties required by the underlying argument. In particular,
the (strictly) stronger notions of simulation soundness and simulation knowledge soundness are
necessary.

In this work, we consider arguments in the pure Random Oracle Model (ROM), formally
defining the notions of simulation security required for the constructions we analyze and provid-
ing security reductions with concrete security bounds. The frameworks used for the constructions
are not novel; however, prior work either differs in the cryptographic model used or analyzes
them with asymptotic security notions.

2

“What you call passion is not a spiritual force, but friction be-
tween the soul and the outside world. Where passion dominates,
that does not signify the presence of greater desire and ambition,
but rather the misdirection of these qualities toward and isolated
and false goal, with a consequent tension and sultriness in the at-
mosphere. Those who direct the maximum force of their desires
toward the center, toward true being, toward perfection, seem qui-
eter than the passionate souls because the flame of their fervor
cannot always be seen. In argument, for example, they will not
shout or wave their arms. But I assure you, they are nevertheless
burning with subdued fires.”

— Hermann Hesse, The Glass Bead Game

Acknowledgements.

I want to express my sincere gratitude to Alessandro Chiesa and Giacomo Fenzi for their thorough
supervision and for giving me the opportunity to complete my Master’s thesis within the group. My
heartfelt thanks go out to everyone at Compsec for making me feel welcome in the lab throughout
these months. I give special thanks to Burcu for her kindness and supportive conversations.

I am deeply grateful to my family. Mama and Papa, thank you teaching me how to love, for
always being here, and opening so many doors for me. Mikuś, I’m glad I have a brother I can call
my best friend. You’re probably the coolest person I know. Never change.

I want to thank my best friend, Nidal, for being like a big brother to me. I am also grateful to
the rest of the Montreal gang — Jaafar “Le Sumulateur”, Pat, Fia, and Sean — for helping me see
a different side of life and maintain balance throughout these years.

This journey at EPFL was made enjoyable thanks to the fantastic friends I’ve made: Pietro,
Andrea, Lorenzo, Dũng, Robert, Alex, Mark and many more. I’m also thankful to Grześ and Konrad
for their great company and engaging discussions. To the friends I’ve met along the way — Luca,
Gennaro, Tomek, Charly, Olympe, Chloé, Julie, Viktor, Adam, Nathan, Luke — that I’m so glad
to have in my life.

Let the music play. It’s time for Discoplay.

4

Contents

1 Introduction 6
1.1 Our Results . 6
1.2 Related Work . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 The random oracle model . 10
2.3 Non-interactive arguments in the ROM . 10
2.4 Knowledge soundness . 11
2.5 Zero-knowledge . 13

3 Simulation security 15

4 Signature schemes 19
4.1 Definition . 19
4.2 Hard relations . 20
4.3 Construction . 21
4.4 Security analysis . 22
4.5 Lower bounds . 23

5 Encryption schemes 25
5.1 Definition . 25
5.2 Construction . 27
5.3 Security analysis . 28
5.4 Lower bounds . 32

6 Future work 33

Appendices 34

A Proof of Theorem 4.7 34

B Proofs of the claims supporting Theorem 5.4 35
B.1 Proof of Claim 5.5 . 35
B.2 Proof of Claim 5.6 . 36
B.3 Proof of Claim 5.7 . 37

5

1 Introduction

A popular tool to study cryptographic protocols is the random oracle model (abbreviated ROM),
where each party (honest or malicious) taking part in a protocol receives query access to the random
function, known as the random oracle. Each query to the random oracle returns an entirely random
fixed-length output. [BR93] first advocated the utility of random oracles for cryptographic protocols.

The ROM presents both advantages and limitations. Cryptographic hash functions typically
replace the idealized random oracle, as hash functions aim to be efficient realizations of the latter.
Although [CGH04] demonstrated the theoretical limitations of this, it remains a prevalent approach
in modern cryptographic practice.

Quite notably, using a hash function eliminates the need for any trusted setup ceremonies,
which are often required in, for instance, the Common Reference String (CRS) model. In our
scenario, such a setup boils down to a simple agreement between parties on which hash function to
use. The transparency of the setup has enabled rapid adoption in applications where delegation of
computation is practical.

Furthermore, hash functions are crucial in rendering interactive proof systems non-interactive.
The most notable methods for this are the Fiat-Shamir transformation [FS86] for sigma protocols
[Sch90] and interactive-proofs [GMR85; Bab85], the Micali transformation [Mic00] for probabilisti-
cally checkable proofs (PCPs) [BFLS91], and the BCS transformation for interactive oracle proofs
(IOPs) [BCS16]. In such scenarios, hash functions bridge information-theoretic constructions and
practical realizations, with the random oracle model providing an intuitive framework for analyzing
security.

Hash functions undergo strenuous standardization processes [Nat]. Security usually holds when
protocols are instantiated with one, albeit on a heuristic basis. It is also worth noting that many
cryptographic constructions studied in the ROM have been shown to maintain security [DFMS19;
LZ19; CMS19] when extended to its quantum counterpart (the QROM). While this implication does
not generally hold [BDFLSZ11; YZ22], these results demonstrate that the ROM is instrumental in
advances towards a post-quantum world.

The recently published book “Building Cryptographic Proofs from Hash Functions”, by Alessan-
dro Chiesa and Eylon Yogev [CY24], rigorously formalizes the landscape of cryptographic arguments
in the ROM. The book provides a comprehensive treatment of fundamental cryptographic notions
focusing on the pure random oracle model: the case where an adversary is bounded only by the
number of queries he makes to the random oracle. In particular, [CY24, Chapter 5] defines the
notions of zero-knowledge [GMR85] and knowledge soundness [GMR85; FS89; BG93] in the context
of non-interactive arguments in the ROM, along with a rigorous exposition of the parameters upon
which the error terms depend.

In this work, we study stronger notions of security in the random oracle model. Namely, we study
simulation security. The two central notions that fall under this term, which we define and study, are
simulation soundness and simulation knowledge soundness (also called simulation extractability).

1.1 Our Results

To begin with, we generalize the notion of adaptive non-interactive zero-knowledge in the random
oracle model from [CY24] to provide security against an adversary capable of seeing multiple ar-
gument strings for true statements of his choice. We follow this with a discussion on simulation
security, which includes formal definitions of the notions of simulation soundness and simulation

6

knowledge soundness in the random oracle model with concrete security parameters. Similarly to
[DHLW10], we make a distinction between two overarching types of simulation security: any and
true simulation security. In the former, the adversary can query the random oracle on any instances,
including false ones. In the latter, the adversary can only see simulated argument strings for true
instances.

In this work, we leverage Non-Interactive Arguments (NARGs) with specific properties to for-
malize the construction of two fundamental cryptographic primitives in the random oracle model.
Specifically, we present: (1) A signature scheme satisfying existential unforgeability under chosen
message attack (EUF-CMA); and (2) An encryption scheme secure under chosen-ciphertext attacks
(CCA-2). For both constructions, we employ zero-knowledge NARGs with carefully selected sim-
ulation security properties in a black-box manner. This approach allows us to achieve the desired
security guarantees while maintaining a clear and modular design.

The signature scheme is constructed using a framework first introduced in [KV09] based on hard
relations (a generalization of one-way functions) and a true-simulation extractable zero-knowledge
NARG. The encryption scheme follows the Naor-Young paradigm [NY90], combining a CPA secure
encryption scheme with a true-simulation sound zero-knowledge NARG. Most importantly, we show
that no construction in this work requires any-simulation security.
Concrete security. The original formalizations of provable security, as introduced in [GM84], are
asymptotic: security bounds are negligible functions of a security parameter. Having this type of
guarantee does not always help when it comes to instantiating a primitive in practice: internally,
there may be other parameters in a given cryptographic construction, which can significantly affect
the security, but that polynomial equivalence does not capture.

In every definition and construction in this work, we follow the approach from [BKR94; BGR95;
BDJR97], wherein all of the resources given to an adversary are parameters upon which the security
bound depends. The proofs of security of the constructions consider the overhead for each parameter
involved in the security reduction. As such, the security bounds are, therefore, non-asymptotic: they
are functions of individual parameters.

1.2 Related Work

The study of simulation security emerged in a line of cryptographic research concerned with non-
malleability. Non-malleable cryptography was first introduced in the work of Dolev, Dwork, and
Naor [DDN91; DDN00], who presented constructions for non-malleable zero-knowledge and non-
malleable commitments in the plain standard model. This work also presented the first known CCA-
2 secure encryption scheme. The work of Sahai [Sah99] (and subsequently [DDOPS01]) strengthened
the notion of non-malleability by introducing and defining simulation soundness in the common
reference string (CRS) model. [Sah99] also introduced a much simplified construction of a CCA-
2 secure encryption scheme. Simulation extractability informally states that an adversary cannot
prove statements for which he does not know a witness, even if he has access to a simulation
oracle. It encompasses the properties necessary to achieve, for instance, security in the universal
composability (UC) framework and is considered the strongest of the three [PR05; DDOPS01;
GMY06; JP11; FKMV12]. All of these provide, on different levels, guarantees against malleability
attacks.

A formal study of the relationships between the notions of non-malleability [DDN91; DDN00],
simulation soundness [Sah99], and simulation extractability [PR05] was not conducted until [JP11].
While simulation soundness immediately implies non-malleability, the converse is true when the

7

non-malleable zero-knowledge protocol (as defined in [DDN91; DDN00]) is also an argument of
knowledge. Most surprisingly, [JP11] show that simulation extractability, often believed to be the
strongest of the three notions, does not necessarily imply simulation soundness. We note that their
analysis is in the plain standard model, and the proof is for the non-adaptive case, with the adaptive
case left as an open question. They also acknowledge that the presence of their counter-example
could be related to the lack of consistency between the formulations of the definitions of simulation
soundness and simulation extractability (from [Sah99] and [PR05], respectively). In particular, they
do not dismiss the possibility of independent, intuitive, and compatible formulations of the notions,
conceptually capturing the ideas.

In this work, we provide such intuitive and compatible definitions. Briefly, for simulation sound-
ness, our definition states that no adversary can provide an accepting argument string for a false
statement despite having access to a bounded number of simulated argument strings, even for false
statements. Simulation knowledge soundness is a strengthening of this, which additionally requires
that an efficient extractor can compute a witness for any statement the adversary can prove, even af-
ter seeing a bounded number of simulated argument strings. We may think of simulation soundness
as a case of simulation knowledge soundness where the extractor is all powerful: since a witness does
not exist, no extraction algorithm, no matter how resourceful, will be able to compute a witness.

Dodis et al. [DHLW10] were the first to make the distinction between any and true simulation
security and show that the full-fledged notion of simulation security, where the adversary may query
the simulation oracle on false instances, is not necessary for constructing encryption and signature
schemes. However, their analysis is in the CRS model and is limited to asymptotic security bounds.

The work by Faust et al. [FKMV12] began exploring the properties above outside the Common
Reference String (CRS) model. They demonstrated that the non-malleability of Σ-protocols is
preserved when these protocols are rendered non-interactive via the Fiat-Shamir transform [FS86].
Notably, their definitions of simulation security are tailored to the Random Oracle Model (ROM).
However, the analysis is also limited to asymptotic security notions.

Our work extends this approach by considering how the reductions affect the parameters con-
cretely and, therefore, steps into the realm of concrete security. This additional effort provides a
more comprehensive understanding of the schemes’ real-world security implications and facilitates
the choice of parameters in deployed scenarios.

Building upon [CY24], this work expands the scope of definitions and strives to formalize simu-
lation security notions with comparable rigor and precision.

8

2 Preliminaries

This section defines basic security notions for non-interactive arguments in the random oracle model.
The definitions are taken from [CY24] directly, except Definitions 2.8 and 2.9: the first is a general-
ization of the zero-knowledge definition from [CY24, Chapter 5] and the second is a computational
relaxation of this generalization. The definitions presented here are foundational for the subsequent
section on simulation security (Section 3), the contents of which serve as building blocks for the
constructions presented in Sections 4 and 5.

All the definitions in this work are adaptive, where, in a given security game, an adversary
interacts with the random oracle and chooses an instance (or instances) based on this interaction.
Adaptive definitions contrast the weaker non-adaptive definitions, where the adversary is bound
to a particular instance chosen prior to his execution. [CY24, Chapter 4.1] includes a complete
discussion of the differences between the two notions.

The section is structured as follows.

• In Section 2.1, we clarify the notation used throughout this work.
• In Section 2.2, we define the random oracle model.
• In Section 2.3, we define non-interactive arguments in the ROM and related security notions.
• In Section 2.4, we define knowledge soundness.
• In Section 2.5, we define zero-knowledge.

2.1 Notation

Randomized algorithms. We use the notation y Ð Apxq to denote that y results from running
a randomized algorithm A on input x. We write Ap ¨ ; ρq to make explicit the randomness ρ used
throughout the execution of A.

Oracles. We use the notation y
tr

ÐÝ AOpxq to denote an algorithm A outputting y on input
x, given query access to an oracle O, where tr is the query-answer trace of A’s interaction with
O. If A has access to multiple oracles, we identify the traces with appropriate subscripts (e.g.,

y
trO1

,trO2
,...

ÐÝÝÝÝÝÝÝ AO1,O2,...pxq). An adversary with access to oracles O1,O2, . . . ,On is pt1, t2, . . . , tnq-
query admissible if for each i P rns he makes at most ti queries to oracle Oi.
Oracle programming. Let f : t0, 1u˚ Ñ t0, 1uσ be a function. Let µ :“ tpxi, yiqui be a query-
answer list, where @i, pxi, yiq P t0, 1u˚ ˆ t0, 1uσ. Then we define the programming of f relative to
query-answer list µ to be the function

f rµspxq :“

#

yi if x “ xi for some i,
fpxq otherwise.

Relations. A relation R Ď t0, 1u˚ ˆ t0, 1u˚ is a set of tuples px,wq, where x is called the instance
and w is called the witness. A relation R naturally induces a language LpRq, which is the set of
instances x such that there exists a witness w such that px,wq P R.
Cryptographic models. We use the word “plain” as an adjective to signify the absence of a
common reference string (CRS) in a cryptographic model (plain standard model, plain ROM, etc.).
We refer to the standard model as one that does not make use of any oracles and relies only on
standard cryptographic assumptions.

9

2.2 The random oracle model

We provide the definition of the random oracle model, a framework for designing and analyzing
cryptographic protocols introduced in [BR93].
Random oracles. For σ P N, we denote by Upσq the uniform distribution over all functions of
the form f : t0, 1u˚ Ñ t0, 1uσ. Equivalently, if f is sampled from Upσq, then for every input x it
holds that y :“ fpxq is a uniformly random σ-bit string (sampled independently for each input).
We refer to f sampled from Upσq as a random oracle with output size σ.

We denote sampling f from Upσq as

f Ð Upσq .

The random function f idealizes a real-world hash function because each input in t0, 1u˚ is
mapped to a random output, independently of the output for any other input.

Definition 2.1. The ROM with output size σ P N is the model where all parties (honest
and malicious) are oracle algorithms and they are each given query access to the same function
f : t0, 1u˚ Ñ t0, 1uσ sampled from the distribution Upσq.

Security analyses of cryptographic protocols in the ROM differ depending on which classes of
adversaries they consider for establishing security. The setting of bounded-query adversaries is where
an adversary trying to attack a cryptographic protocol is all-resourceful, with the only restriction
being that he can query the random oracle a bounded number of times. The setting of bounded-time
adversaries, which is weaker and implies the former notion, additionally restricts the running time of
the adversary. This bounded-query model is called the “pure” ROM, where protocols can leverage,
and only leverage, the same random function given to everyone.

We use the symbol t P N to denote the adversary’s query bound. Intuitively, as t grows, so does
the ability of a t-query adversary to break the security of a given cryptographic protocol.

2.3 Non-interactive arguments in the ROM

A non-interactive argument (NARG) in the ROM is a tuple

NARG “ pP,Vq ,

where P is an oracle algorithm known as the argument prover and V is an oracle algorithm known
as the argument verifier.

A random oracle f is sampled from the distribution Upσq, for a given output size σ P N. Anyone,
including the argument prover P and the argument verifier V, can query f . The argument prover
P receives an instance x and witness w as input and outputs an argument string π. The argument
verifier V receives as input the instance x and argument string π and outputs a bit denoting whether
to accept (the bit is 1) or reject (the bit is 0). See Figure 1 for a diagram.

We say that NARG “ pP,Vq is a non-interactive argument in the ROM for a relation R if it
satisfies two main properties: completeness and soundness.

Below, we provide the formal definitions of the notions above.

10

Definition 2.2 (completeness). A non-interactive argument NARG “ pP,Vq for a relation R is
(perfectly) complete if for every output size σ P N of the random oracle and instance-witness
pair px,wq P R,

Pr

„

Vf px, πq “ 1

ˇ

ˇ

ˇ

ˇ

f Ð Upσq

π Ð Pf px,wq

ȷ

“ 1 .

The probability is taken over the sampling of f and any randomness of the argument prover P and
verifier V.

Definition 2.3 (adaptive soundness). A non-interactive argument NARG “ pP,Vq for a relation
R has adaptive soundness error ϵARG if for every output size σ P N of the random oracle, query
bound t P N, t-query malicious argument prover P̃, and instance size bound n P N,

Pr

»

–

|x| ď n
^ x R LpRq

^ Vf px, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upσq

px, πq Ð P̃f

fi

fl ď ϵARGpσ, t, nq .

The probability is taken over the sampling of f and any randomness of the argument verifier V.

𝒫(𝕩,𝕨) 𝒱(𝕩,𝛑)𝛑

𝑓

Figure 1: Diagram of a non-interactive argument in the random oracle model.

2.4 Knowledge soundness

While soundness (Definition 2.3) is necessary for foundational definitions, more is needed for useful
applications. This section discusses these shortcomings and defines knowledge soundness in its two
fundamental forms.

Knowledge soundness is a stronger security notion. The requirement states that if an argument
prover convinces the argument verifier to accept then with overwhelming probability, the argument
prover “knows” a valid witness for that instance. We refer to proofs/arguments satisfying this
property as proofs/arguments of knowledge [GMR85; FS89; BG93].

Applications often require the use of this stronger notion. Indeed, the language associated with
the NARG’s relation could be total (i.e., LpRq “ t0, 1u˚). In this case, proving that an instance
is in the language is much less involved than proving the knowledge of a certifying witness. In
the case of the former, the trivial proof system is good enough: empty argument strings and an
always-accepting verifier make up for a perfectly complete and perfectly sound proof system. This
emphasizes the importance of knowledge soundness.

Knowledge soundness is formalized by requiring an efficient algorithm called the extractor, which
finds a witness from the argument prover, thereby proving the prover’s knowledge. We define
two variations of knowledge soundness below: the more robust notion of straight-line knowledge

11

soundness and the weaker notion of rewinding knowledge soundness. In both cases, the extractor is
given the query trace tr of the argument prover with the random oracle. The two notions then vary
depending on the additional information the extractor obtains. Intuitively, the more resourceful the
extractor is, the easier the extraction process becomes, and consequently, the easier it is for a proof
system to satisfy this notion.
Straightline knowledge soundness. The definition below captures the stronger variation of
knowledge soundness known as straightline. The strength of the notion comes from the fact that
the extractor only needs information associated with a single execution of the argument prover.
In more detail, the extractor finds the witness given only the argument prover’s output and his
query-answer trace with the random oracle.

Definition 2.4. A non-interactive argument NARG “ pP,Vq for a relation R has straightline
knowledge soundness error κARG if there exists a polynomial-time deterministic algorithm E
(the extractor) such that for every output size σ P N of the random oracle, query bound t P N,
t-query deterministic argument prover P̃, and instance size bound n P N,

Pr

»

–

|x| ď n
^ px,wq R R
^ Vf px, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upσq

px, πq
tr

ÐÝ P̃f

w Ð Epx, π, trq

fi

fl ď κARGpσ, t, nq .

Rewinding knowledge soundness. The definition below formalizes a relaxation of Definition 2.4,
where the extraction process receives as input an instance x, an argument string π, the query-
answer trace tr of the prover with the random oracle, and the prover as a black-box. The extractor
is also granted access to the random oracle and can have access to randomness. Furthermore, the
extractor’s error is permitted to depend on the argument prover’s failure probability in convincing
the verifier. For succinctness, we omit the definition of this last notion.

Having black-box access to the prover allows the extractor to re-run the prover multiple times
on inputs of its choice, using the random oracle to facilitate this. This makes extraction of the
witness much easier. For instance, in some cases, having as little as two accepting argument strings
enables finding a witness by solving a system of linear equations [Sch90].

Definition 2.5. A non-interactive argument NARG “ pP,Vq for a relation R has rewinding
knowledge soundness error κARG with extraction time etARG if there exists a probabilistic
algorithm E (the extractor) such that for every output size σ P N of the random oracle, query bound
t P N, t-query deterministic argument prover P̃ with failure probability δP̃ and running time τP̃ , and
instance size bound n P N,

Pr

»

—

–

|x| ď n
^ px,wq R R
^ Vf px, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upσq

px, πq
tr

ÐÝ P̃f

w Ð Ef px, π, tr, P̃ q

fi

ffi

fl

ď κARGpσ, t, n, δP̃pσ, nqq .

Moreover, E runs in expected time etARGpσ, t, n, δP̃pσ, nq, τP̃pσ, nqq (over the given inputs and internal
randomness).

Definition 2.4 implies Definition 2.5 because in the latter, the extractor receives more inputs.

12

2.5 Zero-knowledge

In the constructions studied later in this work, it is necessary to establish security notions that
protect the (honest) party providing the argument string from a malicious party wishing to learn
information it is not entitled to know. The security notion that captures this is zero-knowledge,
first formally introduced in [GMR85]. Below, we discuss zero-knowledge and provide necessary
definitions for its formalization in the pure random oracle model.

In the context of NARGs, the instance x is an input to the argument prover and verifier, and the
witness w is an input to the argument prover only. To ascertain the privacy of the honest prover,
we aim for the following: π does not reveal any information about w beyond what is implied by the
fact that x is in the language LpRq.

To capture this requirement, it is necessary to show that there exists an efficient probabilistic
algorithm S, called the simulator, which outputs argument strings given only an instance, and
that these simulated argument strings are indistinguishable from those generated by the (witness-
knowing) prover. Informally, an adversary that can query a proving oracle (additionally to the
random oracle) on a bounded number of instance-witness pairs of his choosing should be unable to
tell (up to a small error) whether the argument strings he obtains in return come from the prover,
which generates argument strings using both the instance and the witness, or the simulator, which
generates argument strings based on the instance only.

To formalize the above, we define two experiments: a real-world experiment and a simulated-
world experiment. Based on these, we will formally define zero-knowledge in the ROM.

Definition 2.6. Let σ P N be the output size of the random oracle, n P N an instance size bound,
and A an adversary. The real-world experiment is the distribution defined as follows:

ZKExpRealpσ, n,Aq:

1. Sample a random oracle f Ð Upσq.
2. Emulate an execution of A and do the following to answer his queries.

(a) random oracle query x: answer with y :“ fpxq.
(b) proving oracle query px,wq P R with |x| ď n: answer with π Ð Pf px,wq.

3. Output A’s output.

Definition 2.7. Let σ P N be the output size of the random oracle, n P N an instance size bound, A
an adversary, and S a simulator. The simulated-world experiment is the distribution defined
as follows:

ZKExpSimpσ, n,A,Sq:

1. Sample a random oracle f Ð Upσq.
2. Initialize an empty query-answer list µall.
3. Emulate an execution of A and do the following to answer his queries.

(a) random oracle query x: answer with y :“ f rµallspxq.
(b) proving oracle query px,wq P R with |x| ď n: sample pπ, µq Ð Sf rµallspxq, append µ

to µall provided that µ and µall do not share queries, and answer with π. (Abort if µ
and µall share queries.)

4. Output A’s output.

Before defining zero-knowledge, we quickly highlight the fundamental differences between the
two experiments. Firstly, in the real-world experiment, the proving query is answered by the honest

13

prover, and in the simulated-world experiment, the proving query is answered by the simulator.
Secondly, we allow the simulator to program the random oracle. This is called the explicitly-
programmable random oracle model (EPROM) and is a necessary condition for achieving zero-
knowledge, as without it, the property is too strong to satisfy (see [CY24, Chapter 6.6]). Intuitively,
granting the simulator this capability is acceptable as long as the programmed queries appear
random enough, ensuring the adversary cannot distinguish between a genuinely random query and
a programmed query. As such, Definition 2.7 includes the additional components necessary for
programming the random oracle.

Below, we formalize the definition of zero-knowledge and provide all the parameters upon which
the security bound depends.

Definition 2.8. A non-interactive argument NARG “ pP,Vq for a relation R has zero-knowledge
error zARG (in the EPROM) if there exists a probabilistic polynomial-time simulator S such that,
for every output size σ P N of the random oracle, random oracle query bound t P N, argument
string query bound tP P N, pt, tPq-query admissible adversary A, and instance size bound n P N, the
following two distributions are zARGpσ, t, tP , nq-close in statistical distance

ZKExpRealpσ, n,Aq and ZKExpSimpσ, n,A,Sq .

Note that an admissible adversary’s queries to the random oracle can be anything, whereas queries
to the proving oracle must be valid instance-witness pairs where the instance has bounded size.

Computational zero-knowledge. Definition 2.8 encompasses an adversary that is bounded only
in his query budget to the random oracle and the proving oracle. For applications that often rely on
hardness assumptions, it may suffice for the zero-knowledge property to hold for adversaries that are
additionally computationally bounded.1 Since we consider non-uniform adversaries, the meaningful
metric to bound is the adversary’s size.

Definition 2.9. A non-interactive argument NARG “ pP,Vq for a relation R has computa-
tional zero-knowledge error zARG (in the EPROM) if everything is as in Definition 2.8, but
the adversary’s size is additionaly bounded by s P N. The statistical distance of the distributions,
zARGpσ, t, tP , n, sq, additionally depends on this size.

In Definitions 2.8 and 2.9, the case of tP “ 1 is referred to as one-time (computational) zero-
knowledge. The case of tP ą 1 strictly strengthens the notion and is referred to as multi-instance
(computational) zero-knowledge. Intuitively, the more argument strings an adversary can see, the
greater the chance for him to identify discrepancies between real and simulated argument strings.
Therefore, for stronger security guarantees, it is desirable to have zARG increase slowly as tP increases.

1We note that the computational bound implicitly bounds the total query budget of the adversary.

14

3 Simulation security

In this section, we discuss and define ways to further strengthen the security properties of NARGs
in the random oracle model. We focus on simulation security, a term we use to refer to simulation
soundness and simulation knowledge soundness collectively.

Simulation soundness and simulation knowledge soundness have emerged as concepts in cryp-
tographic research in the context of non-malleability [DDN91; DDN00; Sah99]. Informally, non-
malleability states that no man-in-the-middle should be capable of increasing his chances of proving
a statement, even if he obtains an argument string for a related statement [JP11].

So far, soundness definitions have been relative to an adversary operating in isolation. This ap-
proach does not provide guarantees in scenarios where the adversary can observe argument strings
for other related instances, potentially gaining an advantage. In many applications, such resources
exist, blockchains being an example. Therefore, we must establish security guarantees for an ad-
versary given access to such a resource. We underline the significance of this requirement with an
example below, adapted from [Sah99].

Example 3.1 (Malleable NARG). Consider a perfectly complete, knowledge sound, zero-knowledge
NARG :“ pP,Vq for a relation R. Consider a relation

R1 :“
␣

ppx1,x2q, pw1,w2qq | px1,w1q P R ^ px2,w2q P R
(

.

We define NARG1 :“ pP 1,V 1q for R1, where the prover and the verifier work as shown below.

P 1f ppx1,x2q, pw1,w2qq:
π1 Ð Pf px1,w1q

π2 Ð Pf px2,w2q

return pπ1, π2q

V 1f ppx1,x2q, pπ1, π2qq:
return Vf px1, π1q

^Vf px2, π2q

Trivially, NARG1 preserves all the security properties of NARG. However, the proof system is
malleable, as we discuss now. Consider an adversary A that knows a witness w for instance x such
that px,wq P R. Naturally, A can obtain an argument string π for the statement. Suppose A now
observes an argument string pπ1, π2q for px1,x2q P LpR1q. Thanks to this, he is capable of providing
an argument string pπ, π2q for px,x2q, without knowing w2, thereby proving something he was not
capable of proving beforehand.

Classical definitions of non-malleability are phrased as man-in-the-middle attacks, where an
adversary acts as a mediator between a prover and a verifier: the adversary, acting as a verifier
for the prover, uses his interaction with the prover to produce dishonest proofs for the verifier, for
whom, in turn, he acts as a prover. These definitions are only sometimes helpful when the proof
system satisfies the zero-knowledge property. In particular, they do not necessarily involve the
zero-knowledge simulator for the given proof system.

Having the ability to encapsulate the zero-knowledge simulator’s behavior is, however, com-
pelling, as it allows for proving strong security properties. Let us consider a cryptographic con-
struction that uses a zero-knowledge NARG as a building block. In a security analysis of such a
construction, when one invokes the zero-knowledge property, the adversary’s view changes from one
with real argument strings to one with simulated argument strings. As such, the soundness and
knowledge soundness properties should continue to hold if the adversary has access to simulated

15

Simf rµalls
any pS,x,wq:

pπ, µq Ð Sf rµallspxq

return pπ, µq

(a)

Simf rµalls
true pS,x,wq:

if px,wq R R :
return K

pπ, µq Ð Sf rµallspxq

return pπ, µq

(b)

Figure 3: Implementations for the different flavors of the simulation oracle.

argument strings, appropriately limiting his advantage in the simulated scenario. We now discuss
two fundamental ways this differs from a real scenario.

Firstly, the simulator has the “superpower” to program the random oracle. The adversary should
not be able to leverage the oracle’s programming to prove things he should be incapable of. In more
detail, argument strings, despite being simulated, should not help the adversary in creating valid
argument strings for false statements (in the case of soundness), or it should not help him with
creating valid argument strings for instances for which he does not know a witness (in the case of
knowledge soundness).

Secondly, it is possible to invoke the simulator on any instance, including one that is not in
the language. The zero-knowledge property gives no guarantees on the distribution of an argument
string produced by the zero-knowledge simulator invoked on instances not in the language. Fur-
thermore, as shown in [CY24, Chapter 6.7], for hard languages, the simulator produces convincing
argument strings even for false statements. Such invokations be of no use to the adversary.

Informally, for simulation security, we grant the adversary access to a simulation oracle. He may
query this oracle a bounded number of times, allowing him to see simulated argument strings π1 for
instances x1 of his choosing before he outputs x and π such that x is not among one of the instances
previously queried. Since we (necessarily) allow the zero-knowledge simulator to (explicitly) program
the random oracle (see Section 2.5), the definition of simulation security considers simulators that
(explicitly) program the random oracle.

We consider two flavors of simulation security, as first proposed by [DHLW10], which differ in the
predicate dictating the type of queries for which the adversary can get simulated argument strings.
In both cases, the adversary’s queries to the simulation oracle must be instances x accompanied by
a witness w. We depict them in Figure 3 and describe these below.

• Any simulation security (Figure 3a): the simulation oracle unconditionally returns the sim-
ulated argument string. In particular, the adversary can see simulated argument strings for
false statements.

• True simulation security (Figure 3b): the simulation oracle returns the simulated argument
string only if the instance-witness pair is in the relation. Otherwise, it fails.

In practice, designing NARGs satisfying any simulation security can be more challenging than
designing NARGs satisfying true simulation security. [DHLW10] show that a true simulation knowl-
edge sound zero-knowledge NARG can be constructed from a labeled CCA-secure encryption scheme
and a standard zero-knowledge NARG. By considering these variants, we show that NARGs satis-
fying the weaker property can nevertheless be valuable for cryptographic constructions, as shown

16

in Sections 4 and 5.
We first define the experiment in which the adversary participates, based on which we define

the notion of simulation knowledge soundness. Then, we discuss variations to the definitions.

Definition 3.2. Let σ P N be the output size of the random oracle, n P N an instance size bound,
A an adversary, S a simulator, and FLAVOR P tany, trueu. The FLAVOR-simulation security
experiment is the distribution defined as follows:

SSExpFLAVORpσ, n,A,Sq:

1. Sample a random oracle f Ð Upσq.
2. Initialize an empty query-answer list µall.
3. Emulate an execution of A and do the following to answer his queries.

(a) Random oracle query x: answer with y :“ f rµallspxq.
(b) Simulation oracle query px,wq, with |x| ď n: sample pπ, µq Ð Simf rµalls

FLAVORpS,x,wq,
append µ to µall provided that µ and µall do not share queries, and answer with π.
(Abort if µ and µall share queries.)

4. Output A’s output.

Definition 3.3 (Straightline simulation knowledge soundness). For FLAVOR P tany, trueu, a non-
interactive argument NARG “ pP,Vq for a relation R has straightline FLAVOR-simulation
knowledge soundness error κSIM

ARG (in the EPROM) relative to the probabilistic polynomial-time
simulator S if there exists a polynomial-time deterministic extractor algorithm E such that for every
output size σ P N of the random oracle, random oracle query bound t P N, argument string query
bound tP P N, pt, tPq-query admissible adversary A, and instance size bound n P N,

Pr

»

–

|x| ď n
^ px,wq R R
^ Vf rµallspx, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

px, πq
f,µall,trRO

ÐÝÝÝÝÝÝ SSExpFLAVORpσ, n,A,Sq

w Ð Epx, π, trROq

fi

fl ď κSIM
ARGpσ, t, tP , nq ,

where f is the random oracle sampled in SSExpFLAVOR, µall is the list containing the programming
of the random oracle by S, and trRO is the query-answer trace of A with the random oracle. Above,
A is admissible if every instance queried to the simulation oracle has size at most n and always
outputs an instance x not previously queried to the simulation oracle.

Below, we discuss the different “tweaks” to this definition and how these affect the strength of
the security notion.

Remark 3.4. We could consider a variant of the above definition where the extractor additionally
obtains the trace trPR of queries made by the adversary to the proving oracle. However, this is
beyond the scope of this work.

Rewinding simulation knowledge soundness. Similarly to Definition 2.5, we may consider the
relaxed definition of rewinding simulation knowledge soundness, where the extractor is randomized,
receives access to the random oracle, receives the adversary as a black-box, and runs in expected
polynomial time. The experiment from Definition 3.3 in this case becomes

«

px, πq
f,µall,trRO

ÐÝÝÝÝÝÝ SSExpFLAVORpσ, n,A,Sq

w Ð Ef px, π, trRO, A q

ff

.

The error bound also depends on the adversary’s failure probability δApσ, nq. We define this below.

17

Definition 3.5 (Rewinding simulation knowledge soundness). For FLAVOR P tany, trueu, a non-
interactive argument NARG “ pP,Vq for a relation R has rewinding FLAVOR-simulation knowl-
edge soundness error κSIM

ARG (in the EPROM) relative to the probabilistic polynomial-time sim-
ulator S if given the modifications stated above, the probability from Definition 3.3 is at most
κSIM

ARGpσ, t, tP , n, δApσ, nqq.

Simulation soundness. We define below the notion of simulation soundness. Intuitively, the
definition states that an adversary taking part in the experiment from Definition 3.2 should have
bounded success probability in an attempt to provide a valid argument string for a false statement.
The probability outcome in the probability statement is the same as in Definition 2.3, except that
the verifier has access to the programmed random oracle. We may think of the following definition
as a case of Definition 3.3 with an all powerful extractor.

Definition 3.6 (Simulation soundness). For FLAVOR P tany, trueu, a non-interactive argument
NARG “ pP,Vq for a relation R has FLAVOR-simulation soundness error ϵSIMARG (in the EPROM)
relative to the probabilistic polynomial-time simulator S if for every output size σ P N of the ran-
dom oracle, random oracle query bound t P N, argument string query bound tP P N, pt, tPq-query
admissible adversary A, and instance size bound n P N,

Pr

»

–

|x| ď n
^ x R LpRq

^ Vf rµallspx, πq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

px, πq
f,µall,trRO

ÐÝÝÝÝÝÝ SSExpFLAVORpσ, n,A,Sq

fi

fl ď ϵSIMARGpσ, t, tP , nq ,

where f is the random oracle sampled in SSExpFLAVOR, µall is the list containing the programming
of the random oracle by S, and trRO is the query-answer trace of A with the random oracle. Above,
A is admissible if every instance queried to the simulation oracle has size at most n and always
outputs an instance x not previously queried to the simulation oracle.

Computational simulation security. For Definitions 3.3, 3.5 and 3.6, the error needs to hold
with respect to adversaries bounded only in their query budget to the oracles. Just as in Def-
inition 2.9, we provide a variant, where additionally the adversary is bounded in computational
resources.

Definition 3.7. A non-interactive argument NARG “ pP,Vq for a relation R has computational
simulation security if each of the error bounds from Definitions 3.3, 3.5 and 3.6 holds for an
adversary of size at most s P N. The error bounds, κSIM

ARGpσ, t, tP , n, sq, κSIM
ARGpσ, t, tP , n, δApσ, nq, sq,

and ϵSIMARGpσ, t, tP , n, sq, respectively, additionally depend on s.

18

4 Signature schemes

A signature scheme is a cryptographic primitive that enables a party to use a secret key to sign
messages so that anyone else can verify their authenticity via a corresponding public key. Signatures
aim to be unforgeable, which means that no efficient attacker who knows only the public key can
produce valid signatures for new messages (i.e., messages that have not been previously signed using
the secret key).

In this section, we formally define a signature scheme in the ROM and state the security proper-
ties that such a scheme should satisfy. We then construct a signature scheme from two ingredients:
(1) hard relations (e.g., one-way functions); and (2) non-interactive arguments in the ROM. The non-
interactive argument must satisfy computational zero-knowledge and computational true-simulation
knowledge soundness. This application shows how to protect against an adversary with access to a
simulation oracle that he can only query on true instances. The signature scheme satisfies existential
unforgeability under chosen message attacks (EUF-CMA) [GMR88].

Katz and Vaikuntanathan [KV09] first introduced the framework used in this construction. The
approach was subsequently refined and generalized by Dodis et al. [DHLW10]. It was adapted to
the random oracle model in [FKMV12]. These works studied security in the context of “memory
attacks” [AGV09], ensuring resilience in the presence of bounded leakage of the secret key. In this
work, however, we demonstrate the EUF-CMA security of the construction without addressing the
notion of key-leakage, which we leave for future work. Instead, we focus on the concrete security
parameters of the security notions we analyze.

The section is structured as follows.

• In Section 4.1, we define the notion of a signature scheme in the ROM.
• In Section 4.2, we define hard-relations: a building block for our construction.
• In Section 4.3, we describe the construction of the signature scheme in the ROM.
• In Section 4.4, we analyze the security of the construction.
• In Section 4.5, we discuss lower bounds related to the construction.

4.1 Definition

A signature scheme in the ROM is a tuple of algorithms

SIG “ pSIG.Gen,SIG.Sign,SIG.Verifyq

and has two parameters: a security parameter λ P N and a message length ℓ P N. We use the
notation SIGrλ, ℓs to make these parameters explicit. A random oracle f is sampled from the
distribution Upλq, and the algorithms work as follows.

• The key generator algorithm SIG.Gen, given as input the security parameter λ (represented in
unary), outputs a public key pk and a secret key sk.

• The signing algorithm SIG.Sign, given query access to f and input the secret key sk and a
message m P t0, 1uℓ, outputs a signature σ.

• The verification algorithm SIG.Verify, given query access to f and input the public key pk,
message m P t0, 1uℓ, and signature σ, outputs 1 if and only if the signature is valid.

A signature scheme must satisfy two properties. Completeness states that signatures produced
by the signing algorithm make the verification algorithm accept. Unforgeability states that no

19

efficient attacker can forge signatures. The notion of unforgeability comes in several flavors. In
this work, we focus on existential unforgeability under chosen message attacks (EUF-CMA). The
definition considers a computationally bounded attacker with access to a public key and a “signing
oracle”, which it can query on adaptively chosen messages to obtain signatures created with the
corresponding secret key. EUF-CMA states that such an attacker should be unable to produce a
valid signature for a new message (one that has not been previously queried to the signing oracle).

Definition 4.1. SIG :“ SIGrλ, ℓs is (perfectly) complete if, for every message m P t0, 1uℓ,

Pr

»

–SIG.Verifyf ppk,m, σq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð SIG.Genp1λq

σ Ð SIG.Signf psk,mq

fi

fl “ 1 .

Definition 4.2. SIG :“ SIGrλ, ℓs has unforgeability error ϵSIG if for every query bound t P N for
the random oracle, query bound tSIG P N for the signing oracle, adversary size bound s P N, and
pt, tSIGq-query admissible algorithm A of size s,

Pr

»

–SIG.Verifyf ppk,m, σq “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð SIG.Genp1λq

pm,σq Ð Af,SIG.Signf psk,¨qppkq

fi

fl ď ϵSIGpλ, ℓ, t, tSIG, sq .

Above, A is admissible if he always outputs a message m that was not queried to SIG.Signf psk, ¨q.

Remark 4.3. In the above definition, the key generator algorithm SIG.Gen does not have query
access to the random oracle f because the construction we consider does not need it. In general
(for other constructions), it may be helpful for SIG.Gen to have query access to f .

4.2 Hard relations

In this section, we define a notion of a hard relation, an adaptation of the definition from [DHLW10,
Definition 2.1], in the sense that we do not consider leakage resilience. Informally, a hard relation
is a relation that has an instance-witness sampler with a small hardness error (defined below). We
use hard relations to construct a signature scheme in Section 4.3. One-way functions naturally lead
to hard relations, as explained in Remark 4.6.

Definition 4.4. A probabilistic algorithm G is an instance-witness sampler for a relation R if,
for every instance size bound n P N, Gp1nq always outputs an instance-witness pair px,wq in the
relation R with |x| ď n.

Definition 4.5. An instance-witness sampler G for a relation R has hardness error ϵR if for
every instance size bound n P N, adversary size bound s P N, and every algorithm A of size s P N,

Pr

„

px,w1q P R
ˇ

ˇ

ˇ

ˇ

px,wq Ð Gp1nq

w
1 Ð Apxq

ȷ

ď ϵRpn, sq .

Remark 4.6 (Hard relations from one-wayness). A one-way function [DH76] is a function for which
images of random inputs are hard to invert. The existence of such a function is conjectured, as it
would imply that P ‰ NP.

20

Formally, a one-way function with hardness error ϵ is an efficient deterministic algorithm F such
that for every security parameter λ P N, adversary size bound s P N, and algorithm A of size s,

Pr

»

–F px1q “ y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x Ð t0, 1uλ

y :“ F pxq

x1 Ð Apλ, yq

fi

fl ď ϵpλ, sq .

A one-way function naturally leads to a corresponding instance-witness sampler G for the relation

R :“
␣`

pλ, yq, x
˘

: y “ F pxq
(

.

The instance-witness sampler Gp1λq samples x Ð t0, 1uλ, computes y :“ F pxq, and outputs the
instance x :“ pλ, yq and witness w :“ x. If the one-way function has hardness error ϵpλ, sq, and
its image set is t0, 1uλ

1 , then the instance witness sampler G for the relation R described here has
hardness error ϵRpn :“ λ ` λ1, sq.

4.3 Construction

We now describe the construction of the signature scheme in the ROM. Let R relation and ℓ P N
be a message length. We define the relation

Rℓ :“
!

`

px,mq,w
˘

: px,wq P R ^ m P t0, 1uℓ
)

. (1)

Consider the following two ingredients: (i) an instance-witness sampler G for a relation R; and (ii) a
non-interactive argument NARG “ pP,Vq for the associated relation Rℓ.

Informally, the construction of the signature scheme SIG :“ SIGrλ, ℓs is straightforward. A secret
key sk is an instance-witness pair px,wq in the relation R sampled using G, while the corresponding
public key pk is the instance x. Signing a message m consists of using the argument prover P to
prove the statement “I know a secret w such that

`

px,mq,w
˘

P Rℓ” resulting in an argument string
π, which is used as the signature (σ :“ π). Verifying a signature σ for a message m consists of using
the argument verifier V to check that σ is a valid argument string for the instance px,mq.

Formally, let λ P N be a security parameter and f P Upλq be a random oracle. We describe each
of the algorithms of SIG below.

• SIG.Genp1λq:

1. Sample an instance-witness pair px,wq Ð Gp1λq for the relation R.
2. Set the public key pk :“ x.
3. Set the secret key sk :“ px,wq.
4. Output the key pair ppk, skq.

• SIG.Signf
`

sk “ px,wq,m P t0, 1uℓ
˘

:

1. Set the new instance x1 :“ px,mq.
2. Sample the argument string π Ð Pf px1,wq.
3. Output the signature σ :“ π.

• SIG.Verifyf
`

pk “ x,m P t0, 1uℓ, σ “ π
˘

:

1. Set the new instance x1 :“ px,mq.
2. Output Vf px1, πq.

21

4.4 Security analysis

The security of the signature scheme SIG constructed in Section 4.3 depends on several properties.

• The hardness of the relation R. Intuitively, if it were easy to find a valid witness for an
instance of LpRq (and thus for LpRℓq), then it would be easy to find a secret key for a given
public key of SIG (which would allow forging signatures for SIG).

• The zero-knowledge property of NARG. Signatures in SIG are argument strings that attest
to statements of the form “there exists a witness w such that for a given instance x and
message m it holds that px,wq P R”. Hence, if NARG were not zero-knowledge, then the
argument string may, in principle, reveal w, which allows deducing the secret key (and forging
signatures).

• The simulation knowledge soundness property of NARG.

The fact that NARG must have knowledge soundness is clear: the language LpRq (and thus
LpRℓq) may contain all strings, in which case if NARG were merely sound (rather than knowl-
edge sound) then argument strings in NARG could be empty. Anyone would be able to forge
signatures in SIG. (The language LpRq may be trivial even when R arises from a one-way
function as in Remark 4.6, which shows that this case is not contrived.)

The requirement for the NARG to be simulation knowledge sound is less apparent. In the
unforgeability experiment from Definition 4.2, the adversary gets access to a public key pair
and an oracle that generates signatures using the secret key (unknown to the adversary). This
additional information could help the adversary in producing a forgery. For example, if the
argument strings were malleable, the adversary could modify an argument string obtained
from the proving oracle into another one for a distinct message (which validates successfully
under the same public key). Examples of NARG that are knowledge sound yet malleable are
easy to construct (see Example 3.1). We use the stronger notion of simulation knowledge
soundness to avoid this.

The following theorem formally captures the above intuition. The unforgeability error is upper
bounded by a sum of errors corresponding to the above properties.

Theorem 4.7. Consider the following two ingredients:

• G is an instance-witness sampler for a relation R with hardness error ϵR; and
• NARG “ pP,Vq is a non-interactive argument for the relation Rℓ (see Equation 1) with com-

putational true-simulation knowledge soundness error κSIM
ARG and computational zero-knowledge

error zARG.

Then SIG :“ SIGrλ, ℓs constructed in Section 4.3 is a signature scheme that (is perfectly complete
and) has unforgeability error ϵSIG such that

ϵSIGpλ, ℓ, t, tSIG, sq ďϵRpλ ` ℓ, s ` polypλ, ℓ, t, tSIGqq

` κSIM
ARGpλ, t, tSIG, λ ` ℓ, s ` polypλ, ℓqq

` zARGpλ, t, tSIG, λ ` ℓ, s ` polypλ, ℓqq .

We refer the reader to Appendix A for the proof of Theorem 4.7.

22

4.5 Lower bounds

Characterizing related lower bounds may also be helpful in this construction. Informally, for a given
ingredient and its corresponding security property, we should not only prove that a given property
contributes to the security of the construction but also show that it is necessary for its security. In
particular, we wish to show that our properties are optimal, as using too strong properties could
entail unnecessary overhead in practice.

Below, we demonstrate a strict lower bound on the hardness of the relation and discuss intuitions
for lower bounds for the security properties of the underlying NARG.
Lower bound on the hardness of relation. Intuitively, it is necessary to use hard relations
because if it were easy to find valid witnesses for instances of LpRq, then so would be the forging
of signatures. We formalize this below.

Suppose that for any n, s P N there exists an adversary AR of size s that guesses a valid witness
for an instance of size n (wins the experiment in Definition 4.5) with probability at least ϵRpn, sq.
We define an attacker A against the unforgeability property of SIG. The attacker receives a public
key pk :“ x sampled as px,wq Ð Gp1λq, for which he attempts to forge a signature. He also receives
query access to the random oracle and a signing oracle. He works as follows:

Af,SIG.Signpsk,¨qppk :“ xq:

1. Emulate the execution of ARpxq, to obtain a witness w1.
2. Choose an arbitrary message m P t0, 1uℓ for which to forge a signature.
3. Run π Ð Pf

`

px,mq,w1
˘

, relaying random oracle queries and responses.
4. Return pm,σ :“ πq.

The attacker, A, has size at most s`polypn, ℓq, where the overhead comes from running the argument
prover, as well as the computation of the argument string. He makes no use of the signing oracle
and makes the same amount of queries to the random oracle as the honest prover P. Furthermore,
the instance passed to AR is sampled exactly as in Definition 4.5, provided that A takes part in
the unforgeability experiment of Definition 4.2 (the sampling of the instance and the public key is
identical). It follows that the probability that AR outputs a valid witness w1 is at least ϵRpn, sq.
Hence, the probability that A outputs a pm,σq such that Vf ppx,mq, σq “ 1 is at least ϵRpn, sq. It
follows that the unforgeability of SIG is lower bounded by the hardness of the relation it uses.
Relaxation of computational zero-knowledge. The underlying NARG in the construction has
the zero-knowledge property. A weaker notion implied by the zero-knowledge property is witness
indistinguishability, first introduced in [FS90]. Informally, witness indistinguishability states that if
a statement has several witnesses, an adversary cannot distinguish which witness a prover uses to
construct an argument string. We formally define this notion below in the random oracle model.

Definition 4.8. A non-interactive argument NARG “ pP,Vq for a relation R has adaptive wit-
ness indistinguishability error zARG if for every output size σ P N of the random oracle, query
bound t P N, t-query admissible adversary A, and instance size bound n P N, the random variables
X0 and X1 are zARGpσ, t, nq-close in statistical distance where

Xb :“

$

’

’

&

’

’

%

out

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upσq

px,w0,w1, auxq Ð Af

π Ð Pf px,wbq

out Ð Apaux, πq

,

/

/

.

/

/

-

.

23

Above, A is admissible if he always outputs x,w0,w1 such that px,w0q, px,w1q P R and |x| ď n.

To show that witness indistinguishability is a strictly weaker notion, consider a relation where
each instance has a unique witness.2 For such a relation, a NARG where the prover simply re-
veals the witness is trivially witness indistinguishable, but not zero-knowledge. As such, in the
construction from Section 4.3, it is generally insufficient to have the underlying NARG be witness
indistinguishable because, depending on the choice of the one-way function, the underlying rela-
tion may be one with unique witnesses. Therefore, property that is strictly stronger than witness
indistinguishability is required for this application.

For future work, we will leave the question of whether further relaxations to the zero-knowledge
property are sufficient for this application.
Relaxation of computational true-simulation knowledge soundness. We do not show a
tight lower bound on simulation soundness. However, we provide an intuition as to why it may be
too strong of a property for the application at hand.

We notice that queries to the simulation oracle are instances with a particular structure through-
out the security analysis. The simulator is queried exclusively on instance-witness pairs of the form
`

px, ¨q,w
˘

, where px,wq are fixed before the execution of A.
One approach to prove the lower bound is through a security reduction that uses a good adversary

ASIM against simulation knowledge soundness, appropriately simulates its environment, and uses its
output to forge signatures. There are two obstacles to this approach: (1) ASIM can forge signatures
based on the programmed random oracle f rµs, which does not imply that the signatures would be
valid relative to the non-programmed random oracle; and (2) ASIM can create argument strings for
any instance of Rℓ and in particular R. In contrast, the adversary against EUF-CMA is bound to
forge signatures for a x P LpRq it gets as input.

This latter suggests that it could be sufficient for NARG to be simulation sound with respect
to only a subset of Rℓ (dictated by the instance x), rather than the entire relation, and as such
indicates that the property used in this construction might be too strong.

However, the practical significance of this property remains an open question. We are unaware
of any examples where constructing a NARG with this restricted form of simulation soundness offers
tangible efficiency advantages.

2A family of random permutations leads to such a relation.

24

5 Encryption schemes

An encryption scheme is a cryptographic primitive that enables a party to use a public key to
encrypt messages so that only the holder of a corresponding secret key can decrypt and read them.
Encryptions are secure, meaning no efficient attacker who knows only the public key can gain any
meaningful information about the original message from its encrypted form.

Goldwasser and Micali [GM84] were the first to formalize security notions for encryption schemes,
introducing the concept of semantic security. Informally, semantic security states that whatever
can be efficiently computable about a plaintext, given its ciphertext, is also efficiently computable
without it. The two most common notions that have evolved from this are security under chosen-
plaintext attacks (CPA) and security under chosen-ciphertext attacks (CCA). The former notion
is polynomially equivalent to semantic security. The latter is stronger and guarantees security in
scenarios where an adversary can obtain decryptions to messages of his choice.

In this section, we formally define the notion of an encryption scheme in the ROM and define
the corresponding notions of CPA and CCA security. We define these concepts using games played
between a challenger and an adversary. We then construct an encryption scheme following the
Naor-Young framework of double encryption [NY90], using a NARG satisfying computational any-
simulation soundness and computational zero-knowledge, as well as a CPA secure encryption scheme.
We then provide a concrete security reduction demonstrating the security of the scheme.

The section is structured as follows.

• In Section 5.1, we define the notion of an encryption scheme in the ROM.
• In Section 5.2, we describe the construction of the encryption scheme in the ROM.
• In Section 5.3, we analyze the security of the construction.
• In Section 5.4, we discuss lower bounds related to the construction.

5.1 Definition

An encryption scheme in the ROM is a tuple of algorithms

ENC “ pENC.Gen,ENC.Enc,ENC.Decq

and has two parameters: a security parameter λ P N, a message length ℓ P N, and ciphertext length
ℓc. We use the notation ENCrλ, ℓ, ℓcs when we wish to make these parameters explicit. A random
oracle f is sampled from the distribution Upλq, and the algorithms work as follows.

• The key generator algorithm ENC.Gen, given as input the security parameter λ (represented
in unary), outputs a public key pk and a secret key sk each of length ℓkeypλq.

• The encryption algorithm ENC.Encf , given query access to f and input the public key pk and
a message m P t0, 1uℓ, outputs a ciphertext c P t0, 1uℓc .

• The decryption algorithm ENC.Decf , given query access to f and input the secret key sk and
ciphertext c, outputs a message m P t0, 1uℓ (or aborts if there is an error).

An encryption scheme must satisfy two properties. Completeness states that any message en-
crypted using the encryption algorithm and some public key, will be decrypted to itself, when using
the corresponding secret key with the decryption algorithm. We provide the formal definition below:

25

Definition 5.1. ENC :“ ENCrλ, ℓ, ℓcs is (perfectly) complete if for every message m P t0, 1uℓ,

Pr

»

–ENC.Decf psk, cq “ m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð ENC.Genp1λq

c Ð ENC.Encf ppk,mq

fi

fl “ 1 .

Hiding, which is the other property we require, states that no efficient attacker can learn any
information from encrypted messages. Formalizing this latter property requires some care, though,
and here we provide two definitions that we study.

The notions are defined as distributions of the output of an adversary conditioned on a particular
game. In said game, the adversary, with access to a public key, first outputs two messages (m0 and
m1), following which he gets back an encryption of one of the messages. In one distribution the
adversary is given an encryption of m0 and in the other an encryption of m1. As such the adversay
can be seen as living in two “worlds”, defined by the message which is given as a challenge, with the
security statement being that the adversary cannot distinguish between these worlds. In [BDJR97]
this is referred to as “left-or-right” indistinguishability.

The first, weaker definition is chosen plaintext attack (CPA) error. Informally, this property
states that if an adversary is given query access to the random oracle and the public key, the
adversary’s output should not significantly differ whether the challenge is an encryption of m0 or
m1. We define this formally.

Definition 5.2. An encryption scheme ENC :“ ENCrλ, ℓ, ℓcs in the random oracle model has CPA
error ϵCPA if for every query bound t P N for the random oracle, adversary size bound s P N, and
t-query algorithm A of size s, the distributions DA

CPAp0q and DA
CPAp1q are ϵCPApλ, ℓ, t, sq-close, where:

DA
CPApbq :“

$

’

’

’

’

&

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Af ppkq

ĉ Ð ENC.Encf ppk,mbq

b̂ Ð Af paux, ĉq

,

/

/

/

/

.

/

/

/

/

-

.

The second, stronger definition, is chosen ciphertext attack (CCA) error. Informally, this prop-
erty states that if an adversary is given query access to the random oracle, the public key, and access
to a decryption oracle, the adversary’s output should not significantly differ whether the challenge
is an encryption of m0 or m1. We define this formally.

Definition 5.3. An encryption scheme ENC :“ ENCrλ, ℓ, ℓcs in the random oracle model has CCA
error ϵCCA if for every query bound t P N for the random oracle, query bound tDEC P N for the
decryption oracle, adversary size bound s P N, and pt, tDECq-query admissible algorithm A of size s,
the distributions DA

CCAp0q and DA
CCAp1q are ϵCCApλ, ℓ, t, tDEC, sq-close, where:

DA
CCApbq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Af,ENC.Decf psk,¨qppkq

ĉ Ð ENC.Encf ppk,mbq

b̂ Ð Af,ENC.Decf psk,¨qpaux, ĉq

,

/

/

/

/

/

.

/

/

/

/

/

-

.

Above, A is admissible if, after receiving ĉ as input, A does not query ĉ to the decryption oracle.

26

Many encryption schemes that are CPA-secure can be broken if an adversary gains access to the
decryption oracle. Although restricting the adversary from querying the decryption oracle on the
challenge ciphertext might seem stringent, nothing prevents the adversary from querying the oracle
on a strategically modified version of the challenge ciphertext. This method is commonly used to
show that CPA-secure schemes are insecure under chosen ciphertext attacks (CCA). It intuitively
highlights the necessity for a stronger hiding requirement in any CCA-secure encryption scheme.
Randomness of the algorithms. While ENC.Dec is a deterministic algorithm, we note that
both ENC.Gen and ENC.Enc must be probabilistic for the basic security properties of an encryption
scheme to hold. Indeed, if it were not the case, an adversary could simply trivially get the secret
key by running ENC.Gen or use ENC.Enc to encrypt both of his messages and compare those with
the challenge ciphertext, thereby always winning the experiment.

5.2 Construction

Given message length ℓ P N, we define the relation

Rℓ :“

$

’

’

&

’

’

%

`

ppk0, c0, pk1, c1q, pρ0,m0, ρ1,m1q
˘

:

m0,m1 P t0, 1uℓ

^ m0 “ m1

^ c0 “ ENC.EncfCPAppk0,m0; ρ0q

^ c1 “ ENC.EncfCPAppk1,m1; ρ1q

,

/

/

.

/

/

-

. (2)

Consider the following two ingredients: (i) a CPA-secure encryption scheme ENCCPA “

pENC.GenCPA,ENC.EncCPA,ENC.DecCPAq with message length ℓ; and (ii) a non-interactive argument
NARG “ pP,Vq for the relation Rℓ.

We will use the above ingredients to construct a CCA-secure encryption scheme ENC. Roughly
speaking, the scheme adds a layer of complexity on top of the CPA scheme. A secret key is a tuple
of two independently sampled CPA public/secret key pairs, and the corresponding public key is the
tuple of the associated public keys (excluding the secret keys). Encrypting a message consists of
obtaining two separate encryptions of the message under the two public keys, as well as sampling
an argument string for the relation Rℓ, attesting to the fact that these encryptions are of the same
message. The encryption is the pair of CPA ciphertexts, along with the argument string. Decryption
of a message consists of verifying that the argument string is accepting, followed by the decryption
of one of the two ciphertexts using the CPA decryption algorithm.

Let λ P N be a security parameter and f P Upλq be a random oracle. Each of the algorithms of
ENC is constructed as follows.

• ENC.Genp1λq:

1. Sample two independent key pairs ppk0, sk0q, ppk1, sk1q Ð ENC.GenCPAp1λq.
2. Set the public key pk :“ ppk0, pk1q.
3. Set the secret key sk :“ ppk0, pk1, sk0, sk1q.
4. Output the key pair ppk, skq.

• ENC.Encf
`

pk “ ppk0, pk1q,m P t0, 1uℓ
˘

:

1. For every b P t0, 1u, cb Ð ENC.EncfCPAppkb,m; ρbq for fresh encryption randomness ρb.
2. Set the instance x :“ ppk0, c0, pk1, c1q.
3. Set the witness w :“ pρ0,m, ρ1,mq.

27

4. Sample the argument string π Ð Pf px,wq.
5. Output the ciphertext c :“ pc0, c1, πq.

• ENC.Decf
`

sk “ ppk0, pk1, sk0, sk1q, c “ pc0, c1, πq
˘

:

1. Set the instance x :“ ppk0, c0, pk1, c1q.
2. Check that Vf px, πq “ 1.
3. Decrypt the first ciphertext: m :“ ENC.DecfCPApsk0, c0q.
4. Output the message m.

5.3 Security analysis

The security of the encryption scheme ENC constructed in Section 5.2 depends on several properties.

• The CPA security of ENCCPA. Intuitively, if the hiding property of the underlying CPA
encryption scheme were weak, then any adversary A with a non-negligible advantage in the
CPA security game could be used to break the CCA security of the constructed scheme.
Specifically, a CCA adversary trying to distinguish between two ciphertexts, given a CCA
ciphertext constructed in the manner described above, can simply present one of the two CPA
ciphertexts included in the challenge to the aforementioned “good” CPA adversary A and use
his output to make his guess, thereby matching the CPA adversary’s advantage.

• The zero-knowledge property of NARG. Encryptions in ENC (which are of the form pc0, c1, πq)
contain within them argument strings that attest to statements of the form “there exists a
message m and two random strings ρ0 and ρ1 such that for an instance ppk0, c0, pk1, c1q it
holds that c0 “ ENC.EncCPAppk0,m; ρ0q and c1 “ ENC.EncCPAppk1,m; ρ1q”. Hence, if NARG
were not zero-knowledge then the argument string may in principle reveal m, or the encryption
randomness, both of which permit for the computation of the message behind the challenge
ciphertext.

• The simulation soundness property of NARG. Intuitively, the argument strings need to attest
to the fact that both CPA ciphertexts are encryptions of the same message. As such, if coming
up with an accepting argument string for a false statement were easy, an adversary could, in
principle, manipulate his challenge ciphertext into one that can be queried to the decryption
oracle simply by attaching an accepting argument string along with two ciphertexts that may
not necessarily be encryptions of the same message. Therefore, if the first ciphertext comes
from the challenge and the other is arbitrary, as long as the argument string is accepted, the
adversary can get a decryption of his challenge ciphertext all while staying admissible.

Furthermore, we emphasize that there is no requirement for the NARG to be simulation knowl-
edge sound. In this adversarial setting, the existence of a witness is sufficient because the
encryption algorithm is publicly available through the public key (i.e., it is not reserved for
a party holding a secret). The witness is implicitly generated as a by-product of any honest
encryption. Simulation soundness is, however, needed over plain soundness because an adver-
sary capable of observing encryptions for different messages should not be able to gain any
information about the underlying plaintext.

The following lemma formally captures the above intuition, as the CCA error is upper bounded by
a sum of errors corresponding to the above properties.

28

Theorem 5.4. Consider the following two ingredients:

• ENCCPA is an encryption scheme with CPA error ϵCPA; and
• NARG “ pP,Vq is a non-interactive argument for the relation Rℓ (see Equation 2) with

computational true simulation soundness error ϵSIMARG and computational zero-knowledge error
zARG.

Furthermore, let:

• tCPA
RO,Enc be the number of random oracle queries made by ENC.EncfCPA,

• tCPA
RO,Dec be the number of random oracle queries made by ENC.DecfCPA,

• tRO,V be the number of random oracle queries made by V,
• tRO,S be the number of random oracle queries made by S,
• ℓkey,CPA be the length of the CPA public key in the ENCCPA scheme; and
• ℓc,CPA be the length of the CPA ciphertext in the ENCCPA scheme.

Then for any random oracle query bound t P N, decryption oracle query bound tDEC P N and
pt, tDECq-query admissible adversary A, ENC :“ ENCrλ, ℓ, ℓcs constructed in Section 5.2 is an en-
cryption scheme that (is perfectly complete and) has CCA error ϵCCA such that

ϵCCApλ, ℓ, t, tDEC, sq ď

2
`

zARGpλ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

` ϵSIMARGpλ, t ` tDEC ¨ ptRO,V ` 2tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

` ϵCPApλ, ℓ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc ` tRO,S , s ` polypλ, ℓ, t, tDECqq
˘

.

Proof. Let A be a pt, tDECq-query admissible algorithm of size s, with respect to which the distribu-
tions DA

CCAp0q and DA
CCAp1q from Definition 5.3 are δ close. We argue that δ is upper bounded by

the error expression given in the theorem statement.
We will proceed in a game hopping manner [Sho04], defining the necessary intermediate distri-

butions, which differ only in the way that the encryption and decryption procedures are realized.
We restate the distributions from Definition 5.3 in a manner that is specific to the construction in
Section 5.2. Namely,

DA
CCApbq :“

$

’

’

’

’

&

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Af,Decryptf
psk,¨,bqppkq

ĉ Ð ENC.Encf ppk,mbq

b̂ Ð Af,Decryptf
psk,¨,bqpaux, ĉq

,

/

/

/

/

.

/

/

/

/

-

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Af,Decryptf
psk,¨,bqppkq

c0 Ð ENC.EncfCPAppk0,m; ρ0q

c1 Ð ENC.EncfCPAppk1,m; ρ1q

x :“ ppk0, c0, pk1, c1q

w :“ pρ0,m, ρ1,mq

π Ð Pf px,wq

ĉ :“ pc0, c1, πq

b̂ Ð Af,Decryptf
psk,¨,bqpaux, ĉq

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

,

where the decryption oracle of the adversary, Decryptf psk, ¨, bcq, differs from ENC.Decf only in
the fact that its third parameter, bc, specifies which of the two CPA secret keys and ciphertexts
should be used for the decryption. Since in both distributions both CPA encryptions are of the
same message, which of the two keys is used for decryption bears no relevance. We provide the
oracle pseudocode below.

29

Decryptf psk :“ ppk0, pk1, sk0, sk1q, c :“ pc0, c1, πq, bcq:

x :“ ppk0, c0, pk1, c1q

if Vf px, πq “ 1

m :“ ENC.DecfCPApskbc , cbcq

return m
return K

We now define a series of hybrid distributions. Their main characteristic is that the argument
strings are simulated by the zero-knowledge simulator S, instead of the argument prover. As such,
we replace the honest encryption algorithm ENC.Encf with Encryptf rµalls

S and parameterize the
distributions with b, b1, bc P t0, 1u, where (1) the bits b and b1 specify to the encryption algorithm
that mb and mb1 are to be encrypted under pk0 and pk1, respectively; and (2) bc specifies the
ciphertext cbc and secret key skbc to be used for decryption. We will refer to these as simulated
world distributions.

DA
S pb, b1, bcq :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

µall :“ r s

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Afrµalls,Decryptfrµalls
psk,¨,bcqppkq

pĉ, µq Ð Encryptfrµalls

S ppk,mb,mb1 q

µall :“ µall}µ

b̂ Ð Afrµalls,Decryptfrµalls
psk,¨,bcqpaux, ĉq

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

b̂

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

f Ð Upλq

µall :“ r s

ppk, skq Ð ENC.Genp1λq

pm0,m1, auxq Ð Afrµalls,Decryptfrµalls
psk,¨,bcqppkq

c0 Ð ENC.EncfCPAppk0,mb; ρ0q

c1 Ð ENC.EncfCPAppk1,mb1 ; ρ1q

x :“ ppk0, c0, pk1, c1q

pπ, µq Ð Sfrµallspxq

ĉ :“ pc0, c1, πq

µall :“ µall}µ

b̂ Ð Afrµalls,Decryptfrµalls
psk,¨,bcqpaux, ĉq

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

.

We now use the above distributions to prove our first claim.

Claim 5.5 (Zero-knowledge bound). For any pt, tDECq-query admissible adversary A, and b P t0, 1u,
the distributions DA

CCApbq and DA
S pb, b, bq are

zARGpλ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

-close.

We refer the reader to Appendix B.1 for the proof of Claim 5.5.
To proceed, we define a variant of the simulated world distribution, DA

S,Properpb, b
1, bcq, which dif-

fers from DA
S pb, b1, bcq in that the adversary makes no improper queries to the decryption oracle. We

define an improper ciphertext as c :“ pc0, c1, πq, where ENC.DecfCPApsk0, c0q ‰ ENC.DecfCPApsk1, c1q,
but where the verifier accepts π. In the claim below, we show that if the NARG is simulation sound,
the two distributions must be close.

30

Claim 5.6 (Simulation soundness bound). For any pt, tDECq-query admissible adversary A, and
b P t0, 1u, the distributions DA

S pb, b, bq and DA
S,Properpb, b, bq are

ϵSIMARGpλ, t ` tDEC ¨ ptRO,V ` 2tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

-close.

We refer the reader to Appendix B.2 for the proof of Claim 5.6.
Next, the claim below captures the fact that even if the challenge ciphertext is computed incor-

rectly, the adversary’s behavior cannot change, or else it would contradict the CPA security of the
underlying scheme.

Claim 5.7 (CPA security bound). For any pt, tDECq-query admissible adversary, the distributions
DA

S,Properp0, 0, 0q and DA
S,Properp0, 1, 0q are

ϵCPApλ, ℓ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc ` tRO,S , s ` polypλ, ℓ, t, tDECqq

-close. Analogously, the same holds for the distributions DA
S,Properp0, 1, 1q and DA

S,Properp1, 1, 1q.

We refer the reader to Appendix B.3 for the proof of Claim 5.7.

Claim 5.8 (Decryption oracle change). For any pt, tDECq-query admissible adversary, it holds that
DA

S,Properp0, 1, 0q ” DA
S,Properp0, 1, 1q.

Proof. The equivalence of the two distributions trivially holds, since the adversary makes only proper
queries to the decryption oracle, and therefore ENC.DecfCPApsk0, c0q “ ENC.DecfCPApsk1, c1q. As a
result, whether the decryption is done using sk0 or sk1 does not change the view of the adversary
in the experiment.

We obtain the following chain of distributions:

DA
CCAp0q ÐÑ DA

S p0, 0, 0q ÐÑ DA
S,Properp0, 0, 0q ÐÑ DA

S,Properp0, 1, 0q ÐÑ

ÐÑ DA
S,Properp0, 1, 1q ÐÑ DA

S,Properp1, 1, 1q ÐÑ DA
S p1, 1, 1q ÐÑ DA

CCAp1q .

Combining the bounds from Claims 5.5–5.8, we obtain that the distributions DA
CCAp0q and

DA
CCAp1q are

2
`

zARGpλ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

` ϵSIMARGpλ, t ` tDEC ¨ ptRO,V ` 2tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq

` ϵCPApλ, ℓ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc ` tRO,S , s ` polypλ, ℓ, t, tDECqq
˘

-close. This concludes the proof of the theorem.

31

5.4 Lower bounds

Similarly to Section 4.5, we discuss lower bounds related to the construction. We demonstrate a
strict lower bound on the CPA security of the underlying scheme and discuss intuitions for lower
bounds for the security properties of the underlying NARG.
Lower bound on CPA security. Let λ be the security parameter, and consider an adversary
ACPA of size s P N, with random oracle query bound t for whom the distributions DACPA

CPA p0q and
DACPA

CPA p1q are at least ϵCPApλ, ℓ, t, sq-far. We can use this adversary to construct an adversary A
that breaks the CCA security of ENC.

The attacker A receives access to the random oracle, and a decryption oracle. He works as
follows:

Af,ENC.Decpsk,¨q
`

pk :“ ppk0, pk1q
˘

1. Emulate the execution of Af
CPAppk0q appropriately relaying its queries to f .

2. When A halts with output pm0,m1, auxq, output pm0,m1q.
3. Upon receiving the CCA challenge ciphertext ĉCCA :“ pc0, c1, πq:

Emulate the execution of Af
CPApaux, c0q appropriately relaying its queries to f .

4. When ACPA halts with output b̂, return b̂.

The attacker has size s`Op1q where the additive constant comes from the instructions needed to
simulate ACPA. The adversary makes t queries to the random oracle, and 0 queries to the decryption
oracle. As such for A, the distributions distinguishes between the distributions DA

CCAp0q and DA
CCAp1q

are also ϵCPApλ, ℓ, t, sq-far. It follows that the CPA security of ENCCPA is a lower bound on the CCA
security of ENC.
Lower bound on computational zero-knowledge. The underlying NARG in the construction
satisfies the multi-instance zero-knowledge property. We notice that one-time computational zero-
knowledge is sufficient to achieve chosen-ciphertext attack (CCA) security in our reduction, as at
any step in the security game, the proving oracle is queried once, as demonstrated in the proof of
Theorem 5.4.

The strictly weaker notion of witness indistinguishability, as defined in Definition 4.8, would be
insufficient because, in general, we cannot assume that witnesses are unique.

We leave open the question of whether a further relaxation of the zero-knowledge property would
be sufficient to prove the proposed scheme’s adaptive chosen-ciphertext security (CCA-2).
Lower bound on computational true-simulation soundness. Firstly, similarly to the zero-
knowledge property discussed above, it is sufficient for the construction to use a computational true-
simulation sound NARG that holds against an attacker with a query budget of 1 to the simulation
oracle.

Secondly, if the NARG was not simulation-sound, an adversary could maul its challenge cipher-
text into one that he could query for the decryption oracle. However, similar issues arise as in
Section 4.5, where, in particular, the simulation soundness property could be too general for the
CCA-2 attack game (the CCA attacker is bound to a specific public key). We leave for future work
the investigation of a concrete attack that showcases a tight lower bound on the requirement of this
property.

32

6 Future work

We identify several areas of consideration for future work.
Different flavors of security. The signature and encryption schemes are proven secure based on
well-accepted security definitions from the cryptography literature. Crucially, we consider bounded-
size adversaries. For both primitives, it is advantageous to ensure security against query-bounded
adversaries alone rather than against both query- and size-bounded adversaries. This new constraint
would necessitate a different construction for the encryption scheme, as the CPA encryption scheme
used as a building block may not generally withstand such adversaries.
Lower bounds. We have established some formal lower bounds and discussed the intuitive ne-
cessity of specific building blocks for the constructions we study. While relaxing specific properties
would inevitably lead to weaker bounds, as demonstrated in Theorems 4.7 and 5.4, we acknowledge
that even these relaxed properties could still be too strong for some practical applications, as noted
in Sections 4.5 and 5.4. We, therefore, identify a direction for future research: obtaining tight lower
bounds for both zero-knowledge and simulation security of the NARGs used in our constructions
from Sections 4 and 5. Such an investigation could reveal more efficient constructions or uncover
fundamental trade-offs between security guarantees and the strength of underlying assumptions.
Practical instantiations. The primary objective of this work was to formalize notions related
to simulation security in the random oracle model and provide a concrete security treatment of the
topic. As presented, we have explored various definitions, offering intuitive explanations for the
relative strength of different notions. Sections 4.5 and 5.4, discuss the implications of relaxing the
security of the building blocks. A natural extension of this theoretical foundation would be the
practical instantiation of our schemes. This future work could involve implementing the schemes
using concrete cryptographic building blocks and examining the nuances of parameter selection in
practice.

33

Appendices

A Proof of Theorem 4.7

Let A be a pt, tSIGq-query admissible algorithm of size s that forges (wins the experiment in Defini-
tion 4.2) with probability δ. We argue that δ is upper bounded by the error expression given in the
lemma statement. We proceed in three steps, each contributing an error term.
(1) Adversary against computational zero-knowledge. We define an attacker A1 against the
zero-knowledge property of NARG (Definition 2.8). The attacker receives query access to a random
oracle and a proving oracle, which works as shown below.

A
f,Provep¨,¨q
1 :

1. Sample an instance-witness pair : px,wq Ð SIG.Gen.
2. Run Apxq and answer each of his queries as follows:

(a) Random oracle query x: return y :“ fpxq.
(b) Signing oracle query m: return σ :“ Prove

`

px,mq,w
˘

.
3. When A terminates with an output pm,σq, return ppx,mq, σq.

The attacker A1 makes at most t queries to the random oracle, makes at most tSIG queries to the
proving oracle, and queries instances of size at most λ ` ℓ. The attacker has size s ` polypλ, ℓq,
where the overhead comes from running SIG.Gen. The attacker is admissible for the zero-knowledge
property because his queries to the proving oracle are valid instance-witness pairs. By the zero-
knowledge property of NARG, the statistical distance between the output of A1 in the real-world
experiment and the simulated-world experiment is at most zARGpλ, t, tSIG, λ ` ℓ, s ` polypλ, ℓqq.

The attacker A1 invokes A in such a way that A “sees” the unforgeability experiment when in
the real-world experiment; in particular, A forges if and only if A1 outputs ppx,mq, σq such that
Vf ppx,mq, σq “ 1 where px,mq was not an instance queried to the proving oracle.

In the simulated-world experiment, each proving query
`

px,mq,w
˘

is answered by the argument
simulator S on input px,mq, which up to an error of zARGpλ, t, tSIG, λ`ℓ, s`polypλ, ℓqq is the same as
in the real world experiment. In particular, the simulator is queried only on valid instance-witness
pairs. Therefore, the probability that A1 outputs ppx,mq, σq such that Vf rµallsppx,mq, σq “ 1, where
px,mq was not an instance queried to the simulation oracle, is at least δ1 :“ δ ´ zARGpλ, t, tSIG, λ `

ℓ, s ` polypλ, ℓqq.
(2) Adversary against computational true-simulation knowledge soundness. We define
an attacker A2 against the simulation knowledge soundness property of NARG (Definition 3.3). The
attacker receives query access to a random oracle and a simulation oracle, which he can query on
true instances. The attacker works as follows:

A
f,Simtruep¨,¨q
2 :

1. Sample an instance-witness pair : px,wq Ð SIG.Gen.
2. Run Apxq and answer each of his queries as follows:

(a) Random oracle query x: return y :“ fpxq.
(b) Signing oracle query m: return σ :“ Simtrue

`

px,mq,w
˘

.
3. When A terminates with an output pm,σq, return

`

px,mq, σ
˘

.

34

The attacker A2 makes at most t queries to the random oracle, makes at most tSIG queries to the
proving oracle, and queries instances of size at most λ`ℓ. The attacker has size s`polypλ, ℓq, where
the overhead comes from running SIG.Gen. Moreover, A2 invokes A in such a way that A “sees” the
simulation security experiment, which is the same as the simulated-world experiment orchestrated
by A1 above (being admissible for the zero-knowledge property implies being admissible for the
simulation security experiment). In particular, this means that up to an error of zARGpλ, t, tSIG, λ `

ℓ, s ` polypλ, ℓqq adversary “sees” the unforgeability experiment.
Hence, by the simulation knowledge soundness property, the probability that Eppx,mq, σ, trROq

outputs w such that ppx,mq,wq P Rℓ is at least δ2 :“ δ1 ´ κSIM
ARGpλ, t, tSIG, λ ` ℓ, s ` polypλ, ℓqq.

(3) Adversary against hard relation. We define an attacker A3 against the hardness of R
(Definition 4.5). The attacker receives as input a challenge instance x sampled as px,wq Ð Gp1λq,
and works as follows.

A3pxq:

1. Lazily sample a random oracle f Ð Upλq.
2. Initialize an empty query-answer list µall.
3. Emulate an execution of Apxq and do the following to answer his queries.

(a) Random oracle query x: answer with y :“ f rµallspxq.
(b) Signing oracle query m P t0, 1uℓ: sample pπ, µq Ð Sf rµallsppx,mqq, append µ to µall

provided that µ and µall do not share queries, and answer with π. (Abort if µ and
µall share queries.)

4. When A terminates with an output pm,σq, run w Ð Eppx,mq, σ, trROq, and return w.

The attacker A3 has size at most s`polypλ, ℓ, t, tSIGq, where the additive cost in addition to the size
s of A comes from the lazy simulation of the random oracle and its programming, the simulation
of the signing oracle, as well as from running the argument extractor E . Moreover, A3 invokes A so
that A “sees” the simulation security experiment, as is the previous point. Hence, the probability
that E outputs a valid witness is at least δ2. However, by the hardness of the relation Rℓ, we know
that δ2 ď ϵRpλ ` ℓ, s ` polypλ, ℓ, t, tSIGqq, which concludes the theorem.

B Proofs of the claims supporting Theorem 5.4

Below we provide proofs for Claims 5.5–5.7.

B.1 Proof of Claim 5.5

We define an attacker A1 against the zero-knowledge property of NARG, which attempts to distin-
guish between the distributions DA

CCApbq and DA
S pb, b, bq. The attacker receives query access to a

random oracle and a proving oracle, and works as below.

A
f,Provep¨q

1 :

1. Sample a public and secret key pair: ppk, skq Ð ENC.Genp1λq.
2. Run Af,Decryptf psk,¨,bqppkq and answer each of his queries as follows:

(a) Random oracle query x: return y :“ fpxq.
(b) Decryption oracle query c :“ pc0, c1, πq: return m :“ Decryptf psk, c, bq.

35

3. When A halts with output pm0,m1, auxq, compute the challenge ciphertext:
ĉ Ð Encryptf

Proveppk,mbq.
4. Resume the execution of Af,Decryptf psk,¨,bqpaux, ĉq, and return his output b1.

For each query A makes to the decryption oracle, A1 queries the random oracle tRO,V ` tCPA
RO,Dec

times. When A1 computes the challenge ciphertext, he queries the random oracle 2tCPA
RO,Enc times.

Therefore, A1 will make at most t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc queries to the random oracle.
A1 makes exactly one query to the proving oracle, when computing the challenge ciphertext.

The queries to the proving oracle are made on instances of size at most 2ℓkey,CPA ` 2ℓc,CPA. A1 has
size at most s ` polypλ, ℓ, t, tDECq, where the overhead comes from running the ENC.Gen, Encrypt
and Decrypt procedures. We note that the attacker is admissible for the zero-knowledge property
because he only queries the proving oracle on valid instance-witness pairs.

When A1 is in the real world experiment, Encryptf
Prove corresponds to Encryptf

P . In par-
ticular, the random oracle in not programmed, and the honest prover answers with a real ar-
gument string. When A1 is in the simulated world experiment, Encryptf

Prove corresponds to
Encryptf rµalls

S , which involves programming of the random oracle.3 We emphasize, that the simu-
lation oracle in this case corresponds to Simf rµalls

true , since all proving queries are on true instances.
In the real-world experiment, A1 simulates A in such a way that the distribution of his output

is exactly DA
CCApbq. In the simulated-world experiment, A1 simulates A1 is such a way, that the

distribution of his output is exactly DA
S pb, b, bq.

It follows from the zero-knowledge property, that DA
CCApbq and DA

S pb, b, bq are

zARGpλ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq (3)

-close.

B.2 Proof of Claim 5.6

We define an attacker A2 against the simulation soundness property of NARG (Definition 3.3 and ??).
The attacker has access to a random oracle, and a simulation oracle Simtrue from which he can
obtain simulated argument strings for true instances. A2 simulates A in the same way as A1

does in Claim 5.5 when in the simulated world experiment (i.e.: Encryptf
Prove corresponds to

Encryptf rµalls

S , and the simulation oracle is queried only on valid instance-witness pairs). The
additional difference is the following: if at any point A makes an accepting but improper query to the
decryption oracle, A2 halts his execution (and that of A) and returns this query. That is, whenever
A queries the decryption oracle, A2 runs the following alternative to the Decryptf rµallspsk, ¨, bcq as
a subroutine.

3We highlight that in the simulated-world experiment, the random oracle is programmed in a way that is unknown
to A. In particular, we note that, it is possible for A to notice an inconsistency, in the scenario where the simulator
programs the oracle at a position x, and A queries the random oracle at x before and after receiving the challenge.
This case is however already part of the zero-knowledge error bound.

36

Decryptf rµalls

Properpsk :“ ppk0, pk1, sk0, sk1q, c :“ pc0, c1, πq, bcq:

x :“ ppk0, c0, pk1, c1q

if Vf rµallspx, πq “ 1:

if ENC.Dec
f rµalls
CPA psk0, c0q ‰ ENC.Dec

f rµalls
CPA psk1, c1q:

“Halt, and output c.”

m :“ ENC.Dec
f rµalls
CPA pskbc , cbcq

return m
return K

For each query A makes to the decryption oracle, A2 queries the random oracle tRO,V ` 2tCPA
RO,Dec

times. When A2 computes the challenge ciphertext, he queries the random oracle 2tCPA
RO,Enc times.

Therefore, A2 will make at most t ` tDEC ¨ ptRO,V ` 2tCPA
RO,Decq ` 2tCPA

RO,Enc queries to the random oracle.
A2 makes exactly one query to the simulation oracle, when computing the challenge ciphertext,

on an instance of size at most 2ℓkey,CPA ` 2ℓc,CPA. A2 has size at most s ` polypλ, ℓ, t, tDECq, where
the overhead comes from running the ENC.Gen, Encrypt and Decrypt procedures.

It follows, that if A makes no improper, but accepting queries, the distributions DA
S pb, b, bq and

DA
S,Properpb, b, bq are identical. On the other hand, if A ever makes an improper but accepting query,

then A2 would successfully intercept (and subsequently output) a ciphertext containing a valid
argument string for a false statement. By the simulation soundness property of NARG, this can
happen with probability at most

ϵSIMARGpλ, t ` tDEC ¨ ptRO,V ` 2tCPA
RO,Decq ` 2tCPA

RO,Enc, 1, 2ℓkey,CPA ` 2ℓc,CPA, s ` polypλ, ℓ, t, tDECqq,

which subsequently bounds the statistical distance between the distributions.

B.3 Proof of Claim 5.7

We prove here the statistical closeness of the distributions DA
S,Properp0, 0, 0q and DA

S,Properp0, 1, 0q.
The proof for the distributions DA

S,Properp0, 1, 1q and DA
S,Properp1, 1, 1q is analogous.

We define an attacker A3 against the CPA security of ENCCPA (Definition 5.2). The attacker
receives query access to a random oracle and receives a CPA public key pk1 as input, sampled using
ENC.GenCPA. The attacker outputs two messages during his execution, following which he receives
a challenge ciphertext, which is the CPA encryption of one of the messages. He then carries on with
his execution and terminates by outputting a bit b1. Formally the adversary works as follows.

A3ppk1q:

1. Sample a CPA public and secret key pair: ppk0, sk0q Ð ENC.GenCPAp1λq.
2. Set pk :“ ppk0, pk1q, sk :“ ppk0, pk1, sk0,Kq.
3. Run Af,Decryptf psk,¨,0qppkq and answer each of his queries as follows:

(a) Random oracle query x: return y :“ fpxq.
(b) Decryption oracle query c :“ pc0, c1, πq: return m :“ Decryptf psk, c, 0q.

4. When A halts with output pm0,m1, auxq, output pm0,m1q.
5. Upon receiving the CPA challenge ciphertext ĉCPA:

(a) Compute c0 Ð ENC.EncfCPApm0; ρ0q; and
(b) Sample a simulated argument string pπ, µq Ð Sf rµalls

`

ppk0, c0, pk1, ĉCPAq
˘

.

37

6. Set ĉ :“ pc0, ĉCPA, πq, and resume the execution of Af rµalls,Decryptfrµallspsk,¨,0qpaux, ĉq.
7. When A halts with output b1, return b1.

For each query A makes to the decryption oracle, A3 queries the random oracle tRO,V ` tCPA
RO,Dec

times. When A3 computes the challenge ciphertext, he queries the random oracle 2tCPA
RO,Enc ` tRO,S

times. Therefore, A3 will make at most t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc ` tRO,S queries to the
random oracle.

The attacker A3 has size s`polypλ, ℓ, t, tDECq, where the polynomial overhead comes from running
the argument simulator as well as simulating the decryption and encryption procedures. We note
that A3 has no trouble simulating the decryption oracle for A, as he uses sk0 to decrypt. We also
note that in the second phase of A’s execution, A simulates the random oracle in a way that is
consistent with the programming µ.

We can observe, that when the challenge ciphertext is an encryption of m0, the distribution of
the output of A3 is exactly DA

S,Properp0, 0, 0q. On the other hand, when the challenge ciphertext is
an encryption of m1, the distribution of the output of A3 is exactly DA

S,Properp0, 1, 0q. It follows that
the two distributions are

ϵCPApλ, ℓ, t ` tDEC ¨ ptRO,V ` tCPA
RO,Decq ` 2tCPA

RO,Enc ` tRO,S , s ` polypλ, ℓ, t, tDECqq

-close, because in the contrary case, it would imply that A3 can distinguish between the two cases,
breaking the CPA security of ENCCPA.

38

References

[AGV09] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. “Simultaneous Hardcore Bits and
Cryptography against Memory Attacks”. In: Theory of Cryptography. Ed. by Omer Reingold.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 474–495. isbn: 978-3-642-00457-5
(cit. on p. 19).

[Bab85] L Babai. “Trading group theory for randomness”. In: Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing. STOC ’85. Providence, Rhode Island, USA: As-
sociation for Computing Machinery, 1985, pp. 421–429. isbn: 0897911512. doi: 10.1145/
22145.22192. url: https://doi.org/10.1145/22145.22192 (cit. on p. 6).

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Theory of Cryptography. Ed. by Martin Hirt and Adam Smith. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 31–60. isbn: 978-3-662-53644-5 (cit. on p. 6).

[BDFLSZ11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. “Random oracles in a quantum world”. In: Proceedings of ASIACRYPT 2011 (17th
International Conference on the Theory and Application of Cryptology and Information Se-
curity). ASIACRYPT 2011. 2011, pp. 41–69. url: https://doi.org/10.1007/978-3-642-
25385-0_3 (cit. on p. 6).

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. “A concrete security treat-
ment of symmetric encryption”. In: Proceedings 38th Annual Symposium on Foundations of
Computer Science. IEEE. 1997, pp. 394–403 (cit. on pp. 7, 26).

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computations
in polylogarithmic time”. In: Proceedings of the Twenty-Third Annual ACM Symposium on
Theory of Computing. STOC ’91. New Orleans, Louisiana, USA: Association for Computing
Machinery, 1991, pp. 21–32. isbn: 0897913973. doi: 10.1145/103418.103428. url: https:
//doi.org/10.1145/103418.103428 (cit. on p. 6).

[BG93] Mihir Bellare and Oded Goldreich. “On Defining Proofs of Knowledge”. In: Advances in Cryp-
tology — CRYPTO’ 92. Ed. by Ernest F. Brickell. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1993, pp. 390–420. isbn: 978-3-540-48071-6 (cit. on pp. 6, 11).

[BGR95] Mihir Bellare, Roch Guérin, and Phillip Rogaway. “XOR MACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions”. In: Advances in Cryptology —
CRYPT0’ 95. Ed. by Don Coppersmith. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995,
pp. 15–28. isbn: 978-3-540-44750-4 (cit. on p. 7).

[BKR94] Mihir Bellare, Joe Kilian, and Phillip Rogaway. “The Security of Cipher Block Chaining”.
In: Advances in Cryptology — CRYPTO ’94. Ed. by Yvo G. Desmedt. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 341–358. isbn: 978-3-540-48658-9 (cit. on p. 7).

[BR93] Mihir Bellare and Phillip Rogaway. “Random oracles are practical: a paradigm for designing
efficient protocols”. In: Proceedings of the 1st ACM Conference on Computer and Commu-
nications Security. CCS ’93. Fairfax, Virginia, USA: Association for Computing Machinery,
1993, pp. 62–73. isbn: 0897916298. doi: 10.1145/168588.168596. url: https://doi.org/
10.1145/168588.168596 (cit. on pp. 6, 10).

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. “The random oracle methodology, revisited”.
In: J. ACM 51.4 (July 2004), pp. 557–594. issn: 0004-5411. doi: 10.1145/1008731.1008734.
url: https://doi.org/10.1145/1008731.1008734 (cit. on p. 6).

[CMS19] Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. “Succinct Arguments in the Quan-
tum Random Oracle Model”. In: Theory of Cryptography. Ed. by Dennis Hofheinz and Alon
Rosen. Cham: Springer International Publishing, 2019, pp. 1–29. isbn: 978-3-030-36033-7 (cit.
on p. 6).

39

https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1145/22145.22192
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/103418.103428
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions.
2024. url: https://snargsbook.org (cit. on pp. 6, 8, 9, 14, 16).

[DDN00] Dvora Dolev, C Dwork, and Moni Naor. “Nonmalleable cryptography”. eng. In: SIAM Journal
on Computing 30.2 (2000), p. 47. issn: 0097-5397. doi: 10.1137/S0097539795291562 (cit. on
pp. 7, 8, 15).

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. “Non-malleable cryptography”. In: (1991),
pp. 542–552 (cit. on pp. 7, 8, 15).

[DDOPS01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit
Sahai. “Robust Non-interactive Zero Knowledge”. In: Advances in Cryptology — CRYPTO
2001. Ed. by Joe Kilian. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 566–598.
isbn: 978-3-540-44647-7 (cit. on p. 7).

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. “Security of the Fiat-
Shamir Transformation in the Quantum Random-Oracle Model”. In: Advances in Cryptology
– CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Micciancio. Cham: Springer
International Publishing, 2019, pp. 356–383. isbn: 978-3-030-26951-7 (cit. on p. 6).

[DH76] Whitfield Diffie and Martin E Hellman. “New Directions in Cryptography”. In: IEEE Trans-
actions on Information Theory 22.6 (1976) (cit. on p. 20).

[DHLW10] Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel Wichs. “Efficient
Public-Key Cryptography in the Presence of Key Leakage”. In: Advances in Cryptology -
ASIACRYPT 2010. Ed. by Masayuki Abe. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 613–631. isbn: 978-3-642-17373-8 (cit. on pp. 7, 8, 16, 19, 20).

[FKMV12] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. “On the
Non-malleability of the Fiat-Shamir Transform”. In: Progress in Cryptology - INDOCRYPT
2012. Ed. by Steven Galbraith and Mridul Nandi. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 60–79. isbn: 978-3-642-34931-7 (cit. on pp. 7, 8, 19).

[FS86] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to Identification
and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by Andrew M.
Odlyzko. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986, pp. 186–194. isbn: 978-3-540-
47721-1 (cit. on pp. 6, 8).

[FS89] Uriel Feige and Adi Shamir. “Zero knowledge proofs of knowledge in two rounds”. In: Confer-
ence on the Theory and Application of Cryptology. Springer. 1989, pp. 526–544 (cit. on pp. 6,
11).

[FS90] Uriel Feige and Adi Shamir. “Witness indistinguishable and witness hiding protocols”. In:
Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing. STOC
’90. Baltimore, Maryland, USA: Association for Computing Machinery, 1990, pp. 416–426.
isbn: 0897913612. doi: 10.1145/100216.100272. url: https://doi.org/10.1145/100216.
100272 (cit. on p. 23).

[GM84] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption”. In: vol. 28. 2. Elsevier, 1984,
pp. 270–299 (cit. on pp. 7, 25).

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of interactive
proof-systems”. In: STOC ’85 (1985), pp. 291–304. doi: 10.1145/22145.22178. url: https:
//doi.org/10.1145/22145.22178 (cit. on pp. 6, 11, 13).

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. “A digital signature scheme secure
against adaptive chosen-message attacks”. In: SIAM Journal on computing 17.2 (1988), pp. 281–
308 (cit. on p. 19).

40

https://snargsbook.org
https://doi.org/10.1137/S0097539795291562
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/100216.100272
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178

[GMY06] Juan A. Garay, Philip MacKenzie, and Ke Yang. “Strengthening Zero-Knowledge Protocols
Using Signatures”. In: Journal of Cryptology 19.2 (Apr. 2006), pp. 169–209. issn: 1432-1378.
doi: 10.1007/s00145-005-0307-3. url: https://doi.org/10.1007/s00145-005-0307-3
(cit. on p. 7).

[JP11] Abhishek Jain and Omkant Pandey. Non-Malleable Zero Knowledge: Black-Box Construc-
tions and Definitional Relationships. Cryptology ePrint Archive, Paper 2011/513. https:
//eprint.iacr.org/2011/513. 2011. url: https://eprint.iacr.org/2011/513 (cit. on
pp. 7, 8, 15).

[KV09] Jonathan Katz and Vinod Vaikuntanathan. “Signature Schemes with Bounded Leakage Re-
silience”. In: Advances in Cryptology – ASIACRYPT 2009. Ed. by Mitsuru Matsui. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 703–720. isbn: 978-3-642-10366-7 (cit. on
pp. 7, 19).

[LZ19] Qipeng Liu and Mark Zhandry. “Revisiting Post-quantum Fiat-Shamir”. In: Advances in
Cryptology – CRYPTO 2019. Ed. by Alexandra Boldyreva and Daniele Micciancio. Cham:
Springer International Publishing, 2019, pp. 326–355. isbn: 978-3-030-26951-7 (cit. on p. 6).

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: SIAM Journal on Computing 30.4 (2000),
pp. 1253–1298. doi: 10.1137/S0097539795284959. eprint: https://doi.org/10.1137/
S0097539795284959. url: https://doi.org/10.1137/S0097539795284959 (cit. on p. 6).

[Nat] National Institute of Standards and Technology. Cryptographic Algorithm Validation Program.
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program.
Computer Security Resource Center (cit. on p. 6).

[NY90] Moni Naor and Moti Yung. “Public-key cryptosystems provably secure against chosen cipher-
text attacks”. In: Proceedings of the twenty-second annual ACM symposium on Theory of
computing. 1990, pp. 427–437 (cit. on pp. 7, 25).

[PR05] Rafael Pass and Alon Rosen. “New and improved constructions of non-malleable crypto-
graphic protocols”. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing. STOC ’05. Baltimore, MD, USA: Association for Computing Machinery, 2005,
pp. 533–542. isbn: 1581139608. doi: 10.1145/1060590.1060670. url: https://doi.org/
10.1145/1060590.1060670 (cit. on pp. 7, 8).

[Sah99] A. Sahai. “Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext secu-
rity”. en. In: 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
New York City, NY, USA: IEEE Comput. Soc, 1999, pp. 543–553. isbn: 978-0-7695-0409-4.
doi: 10.1109/SFFCS.1999.814628. url: http://ieeexplore.ieee.org/document/
814628/ (visited on 04/20/2024) (cit. on pp. 7, 8, 15).

[Sch90] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”. In: Advances in
Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New York, NY: Springer
New York, 1990, pp. 239–252. isbn: 978-0-387-34805-6 (cit. on pp. 6, 12).

[Sho04] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryptology
ePrint Archive, Paper 2004/332. https://eprint.iacr.org/2004/332. 2004. url: https:
//eprint.iacr.org/2004/332 (cit. on p. 29).

[YZ22] Takashi Yamakawa and Mark Zhandry. “Verifiable quantum advantage without structure”.
In: Proceedings of FOCS 2022 (63rd Symposium on Foundations of Computer Science).
FOCS 2022. 2022, pp. 69–74. url: https://doi.org/10.1109/FOCS54457.2022.00014
(cit. on p. 6).

41

https://doi.org/10.1007/s00145-005-0307-3
https://doi.org/10.1007/s00145-005-0307-3
https://eprint.iacr.org/2011/513
https://eprint.iacr.org/2011/513
https://eprint.iacr.org/2011/513
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://doi.org/10.1137/S0097539795284959
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1109/SFFCS.1999.814628
http://ieeexplore.ieee.org/document/814628/
http://ieeexplore.ieee.org/document/814628/
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://doi.org/10.1109/FOCS54457.2022.00014

	Introduction
	Our Results
	Related Work

	Preliminaries
	Notation
	The random oracle model
	Non-interactive arguments in the ROM
	Knowledge soundness
	Zero-knowledge

	Simulation security
	Signature schemes
	Definition
	Hard relations
	Construction
	Security analysis
	Lower bounds

	Encryption schemes
	Definition
	Construction
	Security analysis
	Lower bounds

	Future work
	Appendices
	Proof of theorem:sig-security-analysis
	Proofs of the claims supporting theorem:enc-security-analysis
	Proof of claim:enc-zk-adversary
	Proof of claim:enc-simsound-adversary
	Proof of claim:enc-cpa-adversary

